
How to Think Like a Computer Scientist

Logo Version

ii

How to Think Like a Computer Scientist

Logo Version

Allen B. Downey

Guido Gay

Version 1.0

October 30, 2003

Copyright c© 2003 Allen B. Downey, Guido Gay.

History:

March 6, 2003: Allen B. Downey, How to Think Like a Computer Scientist.
Java Version, fourth edition.

October 30, 2003: Allen B. Downey, Guido Gay, How to Think Like a Com-
puter Scientist. Logo Version, first edition.

Permission is granted to copy, distribute, and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later ver-
sion published by the Free Software Foundation; with Invariant Sections being
“Preface”, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the appendix entitled “GNU Free Documentation
License.”

The GNU Free Documentation License is available from www.gnu.org or by
writing to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307, USA.

The original form of this book is LATEX source code. Compiling this LATEX
source has the effect of generating a device-independent representation of the
book, which can be converted to other formats and printed.

The LATEX source for this book is available from

http://ibiblio.org/obp/thinkCS/

Prefazione

Logo is a programming language mostly used as a teaching tool in primary
education. If you know about its turtle graphics commands — such as
repeat 10 [repeat 5 [fd 30 lt 72] lt 36] — you may be curious about
its other capabilities.

Here you’ll find a short introduction to Logo as a general purpose programming
language.

This document adapts the first chapters of Allen Downey’s Open Source book
“How to Think Like a Computer Scientist. Java Version”. Many thanks to
Jeffrey Elkner and Chris Meyers too, for their nice Python version of the book.
Allen Downey illustrates the philosopy of his project in the following Preface.

I would like to thank all LogoForum’s members: I learned much from their lively
discussions.

A sincere thank to Brian Harvey for his “Computer Science Logo Style”, a very
special book indeed, and to Stan Munson for his help.

Un bacio a Elsa; un abbraccio a Michele e Simone (che preferiscono il gioco del
pallone).

Guido Gay
Milano, Italy
October, 2003

vi Prefazione

Preface

“As we enjoy great Advantages from the Inventions of others, we
should be glad of an Opportunity to serve others by any Invention
of ours, and this we should do freely and generously.”

—Benjamin Franklin, quoted in Benjamin Franklin by Edmund S.
Morgan.

Why I wrote this book

This is the fourth edition of a book I started writing in 1999, when I was teaching
at Colby College. I had taught an introductory computer science class using the
Java programming language, but I had not found a textbook I was happy with.
For one thing, they were all too big! There was no way my students would read
800 pages of dense, technical material, even if I wanted them to. And I didn’t
want them to. Most of the material was too specific—details about Java and its
libraries that would be obsolete by the end of the semester, and that obscured
the material I really wanted to get to.

The other problem I found was that the introduction to object oriented pro-
gramming was too abrupt. Many students who were otherwise doing well just
hit a wall when we got to objects, whether we did it at the beginning, middle
or end.

So I started writing. I wrote a chapter a day for 13 days, and on the 14th day I
edited. Then I sent it to be photocopied and bound. When I handed it out on
the first day of class, I told the students that they would be expected to read
one chapter a week. In other words, they would read it seven times slower than
I wrote it.

The philosophy behind it

Here are some of the ideas that made the book the way it is:

• Vocabulary is important. Students need to be able to talk about programs
and understand what I am saying. I tried to introduce the minimum
number of terms, to define them carefully when they are first used, and

viii Preface

to organize them in glossaries at the end of each chapter. In my class, I
include vocabulary questions on quizzes and exams, and require students
to use appropriate terms in short-answer responses.

• In order to write a program, students have to understand the algorithm,
know the programming language, and they have to be able to debug. I
think too many books neglect debugging. This book includes an appendix
on debugging and an appendix on program development (which can help
avoid debugging). I recommend that students read this material early and
come back to it often.

• Some concepts take time to sink in. Some of the more difficult ideas in
the book, like recursion, appear several times. By coming back to these
ideas, I am trying to give students a chance to review and reinforce or, if
they missed it the first time, a chance to catch up.

• I try to use the minimum amount of Java to get the maximum amount of
programming power. The purpose of this book is to teach programming
and some introductory ideas from computer science, not Java. I left out
some language features, like the switch statement, that are unnecessary,
and avoided most of the libraries, especially the ones like the AWT that
have been changing quickly or are likely to be replaced.

The minimalism of my approach has some advantages. Each chapter is about
ten pages, not including the exercises. In my classes I ask students to read
each chapter before we discuss it, and I have found that they are willing to do
that, and that their comprehension is good. Their preparation makes class time
available for discussion of the more abstract material, in-class exercises, and
additional topics that aren’t in the book.

But minimalism has some disadvantages. There is not much here that is intrin-
sically fun. Most of my examples demonstrate the most basic use of a language
feature, and many of the exercises involve string manipulation and mathemat-
ical ideas. I think some of them are fun, but many of the things that excite
students about computer science, like graphics, sound and network applications,
are given short shrift.

The problem is that many of the more exciting features involve lots of details
and not much concept. Pedagogically, that means a lot of effort for not much
payoff. So there is a tradeoff between the material that students enjoy and the
material that is most intellectually rich. I leave it to individual teachers to find
the balance that is best for their classes. To help, the book includes appendices
that cover graphics, keyboard input and file input.

Object-oriented programming

Some books introduce objects immediately; others warm up with a more pro-
cedural style and develop object-oriented style more gradually. This book is
probably the extreme of the “objects late” approach.

ix

Many of Java’s object-oriented features are motivated by problems with previous
languages, and their implementations are influenced by this history. Some of
these features are hard to explain if students aren’t familiar with the problems
they solve.

It wasn’t my intention to postpone object-oriented programming. On the con-
trary, I got to it as quickly as I could, limited by my intention to introduce
concepts one at a time, as clearly as possible, in a way that allows students to
practice each idea in isolation before adding the next. It just happens that it
takes 13 steps.

Data structures

In Fall 2000 I taught the second course in the introductory sequence, called
Data Structures, and wrote additional chapters covering lists, stacks, queues,
trees, and hashtables.

Each chapter presents the interface for a data structure, one or more algorithms
that use it, and at least one implementation. In most cases there is also an imple-
mentation in the java.utils package, so teachers can decide on a case-by-case
basis whether to discuss the implementation, and whether students will build
an implementation as an exercise. For the most part I present data structures
and interfaces that are consistent with the implementation in java.utils.

The Computer Science AP Exam

During Summer 2001 I worked with teachers at the Maine School of Science and
Mathematics on a version of the book that would help students prepare for the
Computer Science Advanced Placement Exam, which used C++ at the time.
The translation went quickly because, as it turned out, the material I covered
was almost identical to the AP Syllabus.

Naturally, when the College Board announced that the AP Exam would switch
to Java, I made plans to update the Java version of the book. Looking at the
proposed AP Syllabus, I saw that their subset of Java was all but identical to
the subset I had chosen.

During January 2003, I worked on the Fourth Edition of the book, making these
changes:

• I added a new chapter covering Huffman codes.

• I revised several sections that I had found problematic, including the tran-
sition to object-oriented programming and the discussion of heaps.

• I improved the appendices on debugging and program development.

• I added a few sections to improve coverage of the AP syllabus.

x Preface

• I collected the exercises, quizzes, and exam questions I had used in my
classes and put them at the end of the appropriate chapters. I also made
up some problems that are intended to help with AP Exam preparation.

Free books!

Since the beginning, this book and its descendents have been available under
the GNU Free Documentation License. Readers are free to download the book
in a variety of formats and print it or read it on screen. Teachers are free to
send the book to a short-run printer and make as many copies as they need.
And, maybe most importantly, anyone is free to customize the book for their
needs. You can download the LaTeX source code, and then add, remove, edit,
or rearrange material, and make the book that is best for you or your class.

People have translated the book into other computer languages (including
Python and Eiffel), and other natural languages (including Spanish, French and
German). Many of these derivatives are also available under the GNU FDL.

This approach to publishing has a lot of advantages, but there is one drawback:
my books have never been through a formal editing and proofreading process
and, too often, it shows. Motivated by Open Source Software, I have adopted
the philosophy of releasing the book early and updating it often. I do my best
to minimize the number of errors, but I also depend on readers to help out.

The response has been great. I get messages almost every day from people
who have read the book and liked it enough to take the trouble to send in a
“bug report.” Often I can correct an error and post an updated version almost
immediately. I think of the book as a work in progress, improving a little
whenever I have time to make a revision, or when readers take the time to send
feedback.

Oh, the title

I get a lot of grief about the title of the book. Not everyone understands that
it is—mostly—a joke. Reading this book will probably not make you think like
a computer scientist. That takes time, experience, and probably a few more
classes.

But there is a kernel of truth in the title: this book is not about Java, and it is
only partly about programming. If it is successful, this book is about a way of
thinking. Computer scientists have an approach to problem-solving, and a way
of crafting solutions, that is unique, versatile and powerful. I hope that this
book gives you a sense of what that approach is, and that at some point you
will find yourself thinking like a computer scientist.

Allen Downey
Boston, Massachusetts
March 6, 2003

Contents

Prefazione v

Preface vii

1 The way of the program 1

1.1 The Logo programming language 1

1.2 What is a program? . 3

1.3 What is debugging? . 3

1.4 Formal and natural languages 5

1.5 The first program . 7

1.6 Glossary . 7

2 Values and variables 9

2.1 Evaluation . 9

2.2 Words and numbers . 10

2.3 Lists and arrays . 11

2.4 Variables . 12

2.5 Variable names . 13

2.6 Operators and operands . 13

2.7 Order of operators . 14

2.8 Comments . 14

2.9 Glossary . 14

xii Contents

3 Procedures 17

3.1 Manipulating words . 17

3.2 Type conversion . 18

3.3 Math functions . 19

3.4 Adding new procedures . 19

3.5 Definitions and use . 21

3.6 Procedures with inputs . 21

3.7 The to command . 22

3.8 Local variables and parameters 23

3.9 Glossary . 24

4 Conditionals and recursion 25

4.1 The remainder function . 25

4.2 Boolean expressions . 25

4.3 Logical functions . 26

4.4 Conditional execution . 26

4.5 Alternative execution . 27

4.6 Chained conditionals . 27

4.7 Nested conditionals . 28

4.8 Recursion . 28

4.9 Infinite recursion . 30

4.10 Keyboard input . 30

4.11 Glossary . 30

5 Functions 33

5.1 Return values . 33

5.2 Program development . 34

5.3 Predicates . 36

5.4 More recursion . 37

5.5 Leap of faith . 39

5.6 One more example . 39

5.7 Checking types . 40

5.8 Glossary . 41

Contents xiii

6 Iteration 43

6.1 Multiple assignment . 43

6.2 The while command . 43

6.3 Tables . 45

6.4 Two-dimensional tables . 46

6.5 Generalization . 47

6.6 Local variables . 48

6.7 More generalization . 49

6.8 Glossary . 50

7 Words 53

7.1 A compound data type . 53

7.2 Selecting characters . 53

7.3 Words length . 53

7.4 Traversal, the foreach loop and recursion 54

7.5 Word comparison . 55

7.6 Words are immutable . 56

7.7 Finding the position of a character 56

7.8 Looping and counting . 57

7.9 Other functions . 57

7.10 Rot13 . 59

7.11 Glossary . 61

8 Lists 63

8.1 List values . 63

8.2 Accessing elements . 64

8.3 List length . 64

8.4 List membership . 65

8.5 Lists and foreach loops . 66

8.6 Sentence . 67

8.7 An extended example . 68

8.8 Glossary . 72

xiv Contents

9 Arrays 73

9.1 Mutability and arrays . 73

9.2 Frequencies revisited . 74

9.3 Sorting . 76

9.4 Glossary . 79

10 Property lists 81

10.1 Other functions . 82

10.2 Hints . 83

10.3 Ebg13 ntnva . 84

10.4 Counting words . 86

10.5 Glossary . 87

11 Files 89

11.1 Text files . 91

11.2 Directories . 92

11.3 Save, Load and Dribble . 93

11.4 Frequencies . 93

11.5 Glossary . 96

A Logo examples 97

A.1 Freq . 97

B GNU Free Documentation License 107

B.1 Applicability and Definitions 107

B.2 Verbatim Copying . 108

B.3 Copying in Quantity . 109

B.4 Modifications . 109

B.5 Combining Documents . 111

B.6 Collections of Documents . 111

B.7 Aggregation with Independent Works 112

B.8 Translation . 112

B.9 Termination . 112

B.10 Future Revisions of This License 112

B.11 Addendum: How to Use This License for Your Documents . . . 113

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This
way of thinking combines some of the best features of mathematics, engineering,
and natural science. Like mathematicians, computer scientists use formal lan-
guages to denote ideas (specifically computations). Like engineers, they design
things, assembling components into systems and evaluating tradeoffs among al-
ternatives. Like scientists, they observe the behavior of complex systems, form
hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving.
Problem solving means the ability to formulate problems, think creatively about
solutions, and express a solution clearly and accurately. As it turns out, the
process of learning to program is an excellent opportunity to practice problem-
solving skills. That’s why this chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful skill by itself. On another
level, you will use programming as a means to an end. As we go along, that end
will become clearer.

1.1 The Logo programming language

The programming language you will be learning is Logo. Logo is an example
of a high-level language; other high-level languages you might have heard of
are Perl, Python, and Java.

As the Logo language is not completely standardized the way Python or Perl
are, in this book we’ll refer to Berkeley Logo, the closest to a standard as far as
Logo is concerned. The Berkeley Logo interpreter is an open source software,
running under a number of different operating systems and can be downloaded
from Brian Harvey’s web site (http://http.cs.berkeley.edu/~bh).

As you might infer from the name “high-level language,” there are also low-
level languages, sometimes referred to as “machine languages” or “assembly

2 The way of the program

languages.” Loosely speaking, computers can only execute programs written in
low-level languages. Thus, programs written in a high-level language have to be
processed before they can run. This extra processing takes some time, which is
a small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in a
high-level language. Programs written in a high-level language take less time
to write, they are shorter and easier to read, and they are more likely to be
correct. Second, high-level languages are portable, meaning that they can
run on different kinds of computers with few or no modifications. Low-level
programs can run on only one kind of computer and have to be rewritten to run
on another.

Due to these advantages, almost all programs are written in high-level languages.
Low-level languages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages:
interpreters and compilers. An interpreter reads a high-level program and
executes it, meaning that it does what the program says. It processes the pro-
gram a little at a time, alternately reading lines and performing computations.

A compiler reads the program and translates it completely before the program
starts running. In this case, the high-level program is called the source code,
and the translated program is called the object code or the executable. Once
a program is compiled, you can execute it repeatedly without further translation.

Logo is considered an interpreted language because Logo programs are executed
by an interpreter. There are two ways to use the interpreter: command-line
mode and script mode.

In command line mode, you type Logo programs and the interpreter prints the
result:

logo

Welcome to Berkeley Logo version 5.3

? print sum 1 1

2

The first line of this example is the command that starts the Logo interpreter.
The next line is the greeting message from the interpreter. The third line starts
with ?, which is the prompt the interpreter uses to indicate that it is ready. We
typed print sum 1 1 on the command line, pressed the “Return” key and the
interpreter replied 2.

Alternatively, you can write a program in a file and use the interpreter to execute
the contents of the file. Such a file is called a script. For example, we used a
text editor to create a file named example.lgo with the following contents:

print sum 1 1

By convention, files that contain Logo programs have names that end with .lgo.

To execute the program, we have to tell the interpreter the name of the script:

1.2 What is a program? 3

logo example.lgo

2

In other development environments, the details of executing programs may dif-
fer. Also, most programs are more interesting than this one.

Most of the examples in this book are executed on the command line. Working
on the command line is convenient for program development and testing, be-
cause you can type programs and execute them immediately. Once you have a
working program, you should store it in a script so you can execute or modify
it in the future.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, such as solving
a system of equations or finding the roots of a polynomial, but it can also be a
symbolic computation, such as searching and replacing text in a document or
(strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions
appear in just about every language:

input: Get data from the keyboard, a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appro-
priate sequence of statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of instructions that look more or
less like these. Thus, we can describe programming as the process of breaking
a large, complex task into smaller and smaller subtasks until the subtasks are
simple enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic later when we
talk about algorithms.

1.3 What is debugging?

Programming is a complex process, and because it is done by human beings,
it often leads to errors. For whimsical reasons, programming errors are called
bugs and the process of tracking them down and correcting them is called
debugging.

4 The way of the program

Three kinds of errors can occur in a program: syntax errors, runtime errors,
and semantic errors. It is useful to distinguish between them in order to track
them down more quickly.

1.3.1 Syntax errors

Logo can only execute a program if the program is syntactically correct; oth-
erwise, the process fails and returns an error message. Syntax refers to the
structure of a program and the rules about that structure. For example, in
English, a sentence must begin with a capital letter and end with a period. this
sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e. e. cummings without spewing error messages.
Logo is not so forgiving. If there is a single syntax error anywhere in your
program, Logo will print an error message and quit, and you will not be able
to run your program. During the first few weeks of your programming career,
you will probably spend a lot of time tracking down syntax errors. As you gain
experience, though, you will make fewer errors and find them faster.

1.3.2 Runtime errors

The second type of error is a runtime error, so called because the error does
not appear until you run the program. These errors are also called excep-
tions because they usually indicate that something exceptional (and bad) has
happened.

Runtime errors are rare in the simple programs you will see in the first few
chapters, so it might be a while before you encounter one.

1.3.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error
in your program, it will run successfully, in the sense that the computer will
not generate any error messages, but it will not do the right thing. It will do
something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted
to write. The meaning of the program (its semantics) is wrong. Identifying
semantic errors can be tricky because it requires you to work backward by
looking at the output of the program and trying to figure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can
be frustrating, debugging is one of the most intellectually rich, challenging, and
interesting parts of programming.

1.4 Formal and natural languages 5

In some ways, debugging is like detective work. You are confronted with clues,
and you have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (A. Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does
what you want. The idea is that you should start with a program that does
something and make small modifications, debugging them as you go, so that
you always have a working program.

For example, Linux is an operating system that contains thousands of lines of
code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux.” (The Linux Users’ Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other program-
ming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, such as English,
Spanish, and French. They were not designed by people (although people try
to impose some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific appli-
cations. For example, the notation that mathematicians use is a formal language
that is particularly good at denoting relationships among numbers and symbols.
Chemists use a formal language to represent the chemical structure of molecules.
And most importantly:

Programming languages are formal languages that have
been designed to express computations.

Formal languages tend to have strict rules about syntax. For example, 3+3 = 6
is a syntactically correct mathematical statement, but 3=+6$ is not. H2O is a
syntactically correct chemical name, but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, such as words, numbers, and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in

6 The way of the program

mathematics (at least as far as we know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement—that
is, the way the tokens are arranged. The statement 3=+6$ is structurally illegal
because you can’t place a plus sign immediately after an equal sign. Similarly,
molecular formulas have to have subscripts after the element name, not before.

As an exercise, create what appears to be a well-structured English
sentence with unrecognizable tokens in it. Then write another sen-
tence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a formal language, you
have to figure out what the structure of the sentence is (although in a natural
language you do this subconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you understand
that “the other shoe” is the subject and “fell” is the verb. Once you have parsed
a sentence, you can figure out what it means, or the semantics of the sentence.
Assuming that you know what a shoe is and what it means to fall, you will
understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens,
structure, syntax, and semantics—there are many differences:

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language—everyone—often have a hard
time adjusting to formal languages. In some ways, the difference between formal
and natural language is like the difference between poetry and prose, but more
so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.

Prose: The literal meaning of words is more important, and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry
but still often ambiguous.

1.5 The first program 7

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages).
First, remember that formal languages are much more dense than natural lan-
guages, so it takes longer to read them. Also, the structure is very important, so
it is usually not a good idea to read from top to bottom, left to right. Instead,
learn to parse the program in your head, identifying the tokens and interpreting
the structure. Finally, the details matter. Little things like spelling errors and
bad punctuation, which you can get away with in natural languages, can make
a big difference in a formal language.

1.5 The first program

Traditionally, the first program written in a new language is a simple greeting
message, such as “Hello, World!”. In Logo, it looks like this:

print [Hello, World!]

This Logo istruction displays a value on the screen. In this case, the result is
the sentence

Hello, World!

[Hello, World!] is a Logo list. The square brackets delimit the list but are
not printed.

Some people judge the quality of a programming language by the simplicity of
a simple greeting program. By this standard, Logo does as well as possible.

1.6 Glossary

problem solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like Logo that is designed to
be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute; also called “machine language” or “assembly lan-
guage.”

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program written in a high-level language into a low-
level language all at once, in preparation for later execution.

8 The way of the program

source code: A program in a high-level language before being compiled.

object code: The output of the compiler after it translates the program.

executable: Another name for object code that is ready to be executed.

script: A program stored in a file (usually one that will be interpreted).

program: A set of instructions that specifies a computation.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of
programming errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to interpret).

runtime error: An error that does not occur until the program has started to
execute but that prevents the program from continuing.

exception: Another name for a runtime error.

semantic error: An error in a program that makes it do something other than
what the programmer intended.

semantics: The meaning of a program.

natural language: Any one of the languages that people speak that evolved
naturally.

formal language: Any one of the languages that people have designed for
specific purposes, such as representing mathematical ideas or computer
programs; all programming languages are formal languages.

token: One of the basic elements of the syntactic structure of a program, anal-
ogous to a word in a natural language.

parse: To examine a program and analyze the syntactic structure.

Chapter 2

Values and variables

2.1 Evaluation

Logo displays 2 on the screen in response to print sum 1 1 on the command
line. This instruction doesn’t do much, but it’s useful to illustrate how Logo
evaluates instructions.

print and sum are primitive procedures, known by Logo in the beginning. A
procedure is like a recipe that allows Logo to carry out a specific task.

Every procedure accepts a given number of inputs. Inputs can be numbers or
other kinds of information. print accepts one input, sum two.

Commands are procedures that have an effect —print is a command that
displays its input on the screen— while functions are procedures that output
a value, returning it to another procedure. sum is a Logo function that adds
two numbers.

A Logo instruction consists of the name of a command, followed by as many
expressions as necessary to provide its inputs. A Logo expression is either
an explicitly provided value such as a number or else the name of a function,
followed by as many expressions as necessary to provide its inputs. sum 1 1 is
an expression, as an explicitly provided value like 2.

We can now describe the steps Logo takes to evaluate the instruction print
sum 1 1:

1. Logo first reads the word print. Logo knows that print is the name of a
command that requires one input, so it keeps on reading.

2. Logo reads the word sum, the name of a function that requires two inputs,
so it keeps on reading.

3. Logo reads the following two numbers and invokes the expression sum 1
1 that returns the value 2 to the command print.

10 Values and variables

4. At this point Logo invokes print 2 which displays 2 on the screen.

Using the value returned by one procedure as the input to another procedure is
called composition of functions.

2.2 Words and numbers

A Logo word is an ordered collection of characters, delimited by spaces, square
brackets, parentheses, braces and arithmetic operators.

When Logo is evaluating instructions it always interprets unquoted words as
names of procedures. In order to convince Logo to read a word simply as itself,
we must type a quotation mark (") in front of it:

? print hello

I don’t know how to hello

? print "hello

hello

In the first instruction Logo thinks that hello is the name of a procedure and
therefore prints an error message. In the second the word is quoted and it is
evaluated as itself, as the input of the command print.

If a word includes a a space, we should use the following idiomatic form:

? print "|Hello, World!|

Hello, World!

Numbers are special kinds of words, that happen to contain only digits, the
decimal point and the character e.

The following are valid logo numbers:

1 1.9 0.01 0.05 .7 4. 1.1e1 0.2e2 .6e3

This can be seen by using a function called numberp that returns true if the
input is in fact a number:

? print numberp 1

true

? print numberp 1.1e1

true

? print numberp "ER

false

numberp is a member of a class of functions that return the values true or false,
also called predicates. wordp is another predicate, that tests if its input is a
word.

Logo tries very hard to make things easy for beginners, so numbers of different
kind —integers and decimals— can be freely mixed in arithmetic expressions.

2.3 Lists and arrays 11

? print sum 1.1 3

4.1

? print difference 3.25 4

-0.75

? print product 0.1 5

0.5

? print quotient 1 3

0.333333333333333

Numbers are always evaluated as themselves, that is their value after evaluation
is what it was before evaluation. On the other hand, we can quote numbers, if
we wish.

? print "1.1

1.1

? print sum 2 "3

5

? print product 0.1 "5e0

0.5

2.3 Lists and arrays

Lists are ordered collections of elements. In the following example, the list’s
elements are words.

? print [This is a flat list]

This is a flat list

? show [This is a flat list]

[This is a flat list]

show is a command that displays its input on the screen. It differs from print
because it displays the delimiting characters of lists —square brackets.

Keep in mind that square brackets serve two purposes at once: they delimit a
list —without actually being part of it— while quoting it, so that Logo’s eval-
uator interprets the list as representing itself, without invoking the procedures
it names.

? print [print "hello]

print "hello

? print "hello

hello

As with numbers and words, we can test the type list with a specific predicate:

? print listp [a b c 1]

true

? print listp [a [b 1] d]

true

? print listp [a {b 1} d]

true

12 Values and variables

Lists elements can be words, numbers, other lists or, as in the third example,
arrays. If a list contains only words or numbers it is called a sentence.

As lists, arrays are ordered collections of elements. Differently from lists, arrays
have a fixed length that should be declared beforehand, while lists can grow and
shrink at will.

? print {This is an array}

{This is an array}

? print {1 {a b} 3 4}

{1 {a b} 3 4}

Braces delimit an array and quote it. Array elements can be words, numbers,
other arrays or lists.

As with other data types, we can test arrays with a specific predicate:

? print arrayp {a b c 1}

true

? print arrayp {a [b 1] d}

true

? print arrayp {a {b 1} d}

true

The function array outputs an array with a given size, with members empty
lists.

? print array 4

{[] [] [] []}

As we’ll see in later chapters, arrays aren’t often used in Logo, although some-
times they are the best solution to specific problems, particularly those requiring
extensive shuffling of elements.

2.4 Variables

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is identified by a name that refers to a value.

The command make creates new variables and gives them values:

? make "name "Guido

? make "n 17

? make "hello [Hello, World!]

? make "age {12 13 11 13 14 10}

This example makes four assignments. The first assigns Guido as the value of
a new variable named name. The second gives the integer 17 to n, the third
assign the list Hello, World! to hello and the fourth assigns the array 12 13
11 13 14 10 as the value of a new variable named age.

The print command also works with variables.

2.5 Variable names 13

? print thing "name

Guido

? print thing "n

17

? print thing "hello

Hello, World!

? print thing "age

{12 13 11 13 14 10}

Thing is a function. It takes one input, which must be a word that’s the name
of a variable, and outputs the value of the variable.

Examining the value of a variable is such a common task that Logo allows this
abbreviation, where the character : stands for thing ".

? print :name

Guido

? print :n

17

? print :hello

Hello, World!

? print :age

{12 13 11 13 14 10}

2.5 Variable names

Programmers generally choose names for their variables that are meaningful—
they document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and
numbers. Although it is legal to use uppercase letters, by convention we don’t.
If you do, remember that case doesn’t matter. Bruce and bruce are the same
variables.

2.6 Operators and operands

Operators are special symbols that represent computations like addition and
multiplication and can be used instead of functions such as sum or product.
The values the operator uses are called operands.

The following are all legal Logo expressions whose meaning is more or less clear:

20+32 :hour-1 :minute/60 (5+9)*(15-7)

The symbols +, -, and /, and the use of parenthesis for grouping, mean in Logo
what they mean in mathematics. The asterisk (*) is the symbol for multiplica-
tion.

There is no exponentiation operator in Logo and the function power should be
used instead:

? print power 3 2

9

When a variable name appears in the place of an operand, it is replaced with
its value before the function is performed.

14 Values and variables

2.7 Order of operators

When more than one operator appears in an expression, the order of evaluation
depends on the rules of precedence. Logo allows the same precedence rules
for its mathematical operators that mathematics does:

• Parentheses have the highest precedence and can be used to force an ex-
pression to evaluate in the order you want. Since expressions in paren-
theses are evaluated first, 2 * (3-1) is 4. You can also use parentheses
to make an expression easier to read, as in (:minute * 100) / 60, even
though it doesn’t change the result.

• Multiplication and Division have the same precedence, which is higher
than Addition and Subtraction, which also have the same precedence. So
2*3-1 yields 5 rather then 4.

• Operators with the same precedence are evaluated from left to right.

2.8 Comments

As programs get bigger and more complicated, they get more difficult to read.
Formal languages are dense, and it is often difficult to look at a piece of code
and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing. These notes are called comments,
and they are marked with the ; symbol:

; compute the percentage of the hour that has elapsed

make "percentage (59 * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments
at the end of a line:

make "percentage (59 * 100) / 60 ; elapsed time

Everything from the ; to the end of the line is ignored—it has no effect on the
program. The message is intended for the programmer or for future program-
mers who might use this code.

2.9 Glossary

procedure: a set of instructions that allows Logo to carry out a specific task
(a computation).

primitive procedure: a procedure known by Logo by design.

command: a procedure that has an effect, such as print or forward.

function: a procedure that outputs a value, returning it to another procedure.

2.9 Glossary 15

value: A number, word, list or array.

instruction: the name of a command, followed by as many expressions as nec-
essary to provide its inputs.

expression: an explicitly provided value or else the name of a function, followed
by as many expressions as necessary to provide its inputs.

word: an ordered collection of characters

predicate: a function that returns true or false

list: an ordered collection of elements

array: an ordered collection of elements

variable: It is identified by a name associated to a value.

assignment: A command that assigns a value to a variable.

operator: A special symbol that represents a simple computation like addition
or multiplication.

operand: One of the values on which an operator operates.

rules of precedence: The set of rules governing the order in which arithmetic
expressions involving multiple operators and operands are evaluated.

comment: Information in a program that is meant for other programmers (or
anyone reading the source code) and has no effect on the execution of the
program.

16 Values and variables

Chapter 3

Procedures

3.1 Manipulating words

Sometimes it’s useful to take apart words or put them together.

The functions first and butfirst are the building blocks for many of the more
interesting procedures we will see in later chapters.

? print first "abcd

a

? print first 231

2

? print butfirst "abcd

bcd

? print butfirst 1.023

.023

? print butfirst butfirst "abcd

cd

? print first butfirst "abcd

b

As the names imply, first returns the first character of its input, while
butfirst returns all the characters of its input but the first.

The function item takes two inputs, the first a positive interger and the second
a word. The function returns the nth character of the word if the first input is
n.

? print item 2 "abcd

b

? print item 3 231

1

We can combine words with the function word that accepts two words as inputs
and outputs a new word by concatenating the characters in the input words.

18 Procedures

? print word "abcd "efg

abcdefg

? print word "abcd first 123

abcd1

We can also combine words in a sentence, with sentence, a function that takes
two words as inputs and outputs a flat list.

? print sentence "Berkeley "Logo

Berkeley Logo

? print (sentence "Berkeley "Logo "is "a "nice "program)

Berkeley Logo is a nice program

? show (sentence 1 2 3 4 5 6 7 8 9 10)

[1 2 3 4 5 6 7 8 9 10]

A point is worth mentioning. Logo primitive procedures accept a default number
of inputs —two in the case of sentence— but sometimes we can change the
default number using parentheses.

? (print "Berkeley "Logo)

Berkeley Logo

? (show 1 2 3 4 5 6 7 8 9 10)

1 2 3 4 5 6 7 8 9 10

? print (product 2 3 4)

24

? print (sum 20 30 10 40)

100

? show (word "U "C "B "Logo)

UCBLogo

Finally, count is a function that counts the characters in a word.

? print count "abcdefg

7

? print count word first "abcd butfirst 1234567890

10

3.2 Type conversion

Logo tries very hard to automatically convert values as needed.

Words formed only by digits, the decimal point and the character e arranged in
specific sequences, can be used in mathematical expressions.

On the other side, as we’ve seen, numbers can be the input to functions that
operate on words.

Still there are two explicit type converting funtions, namely arraytolist and
listtoarray, that convert lists into arrays and viceversa.

? show arraytolist {1 2 3}

[1 2 3]

? show listtoarray [a b c]

{a b c}

3.3 Math functions 19

3.3 Math functions

In mathematics, you have probably seen functions like sin and log, and you
have learned to evaluate expressions like sin(pi/2) and log(1/x). First, you
evaluate the expression in parentheses (the input of the funtion or its argument).
For example, pi/2 is approximately 1.571, and 1/x is 0.1 (if x happens to be
10.0).

Then, you evaluate the function itself, either by looking it up in a table or by
performing various computations. The sin of 1.571 is 1, and the log of 0.1 is
-1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated expressions
like log(1/sin(pi/2)). First, you evaluate the argument of the innermost
function, then evaluate the function, and so on.

Logo provides most of the familiar mathematical functions.

? make "decibel log10 17

? make "angle 45

? make "height sin :angle

The first statement sets decibel to the logarithm of 17, base 10. There is also
a function called ln that takes logarithm base e.

The third statement finds the sine of the value of the variable angle. sin and
the other trigonometric functions take arguments in degrees. If you know your
geometry, you can verify the result by comparing it to the square root of two
divided by two:

? print sin 45

0.707106781186547

? print quotient 1 sqrt 2

0.707106781186548

As we have already seen, functions can be composed, as in the following example:

? make "pi 3.14159

? make "x cos sum :angle quotient :pi 2

This instruction takes the value of pi, divides it by 2, and adds the result to the
value of angle. The sum is then passed as an argument to the cos function.

3.4 Adding new procedures

So far, we have only been using the procedures that come with Logo, but it
is also possible to add new procedures. Creating new procedures to solve your
particular problems is one of the most useful things about a general-purpose
programming language.

In the context of programming, a procedure is a named sequence of instructions
that performs a desired operation. This operation is specified in a procedure

20 Procedures

definition. The procedures we have been using so far have been defined for us,
and these definitions have been hidden. This is a good thing, because it allows
us to use the procedures without worrying about the details of their definitions.

The syntax for a procedure definition is:

define "name [[List of parameters] [instruction instruction ...]]

You can make up any names you want for the procedures you create, except
that you can’t use a number. The list of parameters specifies what information,
if any, you have to provide in order to use the new procedure.

The first couple of procedures we are going to write have no parameters, so the
syntax looks like this:

define "newLine [[][print "]]

This procedure is named newLine. The empty square brackets indicate that
it has no parameters. It contains only a single instruction, which displays a
newline character.

The syntax for calling the new procedure is the same as the syntax for built-in
procedures:

? newLine

?

Notice the extra space between the two command lines. What if we wanted more
space between the lines? We could write a new procedure named threeLines
that prints three new lines:

define "threeLines [[][newLine newLine newLine]]

? threeLines

?

You should notice a few things about this program:

1. You can call the same procedure repeatedly. In fact, it is quite common
and useful to do so.

2. You can have one procedure call another procedure; in this case
threeLines calls newLine.

So far, it may not be clear why it is worth the trouble to create all of these new
procedures. Actually, there are a lot of reasons, but this example demonstrates
two:

• Creating a new procedure gives you an opportunity to name a group of
instructions. Procedures can simplify a program by hiding a complex
computation behind a single name.

3.5 Definitions and use 21

• Creating a new procedure can make a program smaller by eliminating
repetitive code. For example, a short way to print nine consecutive new
lines is to call threeLines three times.

3.5 Definitions and use

Pulling together the code fragments from the preceding section, the whole pro-
gram looks like this:

define "newLine [[][print "]]

define "threeLines [[][newLine newLine newLine]]

This program contains two procedure definitions: newLine and threeLines.
threeLines is the top-level procedure, that is the procedure we invoke on
the command line to run the program.

? threeLines

?

As you might expect, you have to create a procedure before you can execute it.
In other words, the procedure definition has to be executed before the first time
the procedure is called.

3.6 Procedures with inputs

Some of the built-in procedures you have used require one or more inputs. For
example, if you want to find the sine of a number, you have to indicate what the
number is. The value taken by a a function’s input when the function is invoked
is called the actual argument. Thus, when invoked, sin takes a numeric value
as its argument.

Some procedures take more than one argument. For example, power takes two
arguments, the base and the exponent. Inside the procedure, the values that
are passed get assigned to local variables called parameters.

Here is an example of a user-defined procedure that takes a parameter:

define "printTwice [[bruce][print :bruce print :bruce]]

This procedure takes a single argument and assigns it to a parameter named
bruce. The value of the parameter (at this point we have no idea what it will
be) is printed twice. The name bruce was chosen to suggest that the name you
give a parameter is up to you, but in general, you want to choose something
more illustrative than bruce.

The procedure printTwice works with different types of inputs:

22 Procedures

? printTwice "john

john

john

? printTwice 3.1459

3.1459

3.1459

? printTwice [one two]

one two

one two

?

In the first procedure call, the argument is a word. In the second, it’s a number.
In the third, it’s a list.

The same rules of composition that apply to built-in procedures also apply to
user-defined procedures, so we can use any kind of expression as an argument
for printTwice:

? printTwice word "Ucb "logo

Ucblogo

Ucblogo

? printTwice product 3 2

6

6

We can also use the value of a variable as an argument:

? make "name "Michele

? printTwice :name

Michele

Michele

Notice something very important here. The name of the variable (name), whose
value we pass as an argument, has nothing to do with the name of the parameter
(bruce). It doesn’t matter what the value was called back home (in the caller);
here in printTwice, we call everybody bruce.

3.7 The to command

Procedures in Logo can also be defined with the special form to.

Consider the new procedure square:

define "square [[n][print product :n :n]]

and see what happens when we invoke pops:

? square 3

9

? pops

to square :n

print product :n :n

end

3.8 Local variables and parameters 23

We defined square in the usual way but when we invoked pops — a command
that prints the definitions of all procedures — we got an equivalent definition
based on the special command to.

The first name after to is the name of the procedure (it should not be quoted);
n is the name of the parameter and should be preceded by :; the second line is
the body of the procedure which terminates with the keyword end, written by
itself on a final line.

Using define or to is mainly a matter of taste. Following most Logo authors,
in the rest of this manual we’ll be using to to define new procedures.

3.8 Local variables and parameters

When you create a local variable, it only exists inside the procedure, and you
cannot use it outside. For example:

to catTwice :part1 :part2

local "cat

make "cat word :part1 :part2

printTwice :cat

end

when invoked gives this result:

? catTwice "E "R

ER

ER

This procedure takes two arguments, creating two local variables named part1
and part2; the command local creates a new (local) variable named cat; make
assigns the value of the expression word :part1 :part2 to cat; printTwice
prints the result twice.

Notice that when we are invoking to from the command line, Logo reminds us
that we are defining a new procedure beginning the lines following the first with
a >.

When catTwice terminates, the variable cat is destroyed, as are the two pa-
rameters part1 and part2. If we try to print them, we get an error:

? print :cat

cat has no value

? print :part1

part1 has no value

? print :part2

part2 has no value

24 Procedures

3.9 Glossary

procedure: A named sequence of instructions that performs some useful oper-
ation. Procedures may or may not take parameters and may or may not
produce a result.

procedure definition: an instruction that creates a new procedure, specifying
its name, parameters, and the instructions it executes.

procedure invocation: to carry out a procedure, to do what the procedure
says.

procedure call: to carry out procedure, to do what the procedure says.

argument: A value provided to a procedure when the procedure is called. This
value is assigned to the corresponding parameter in the procedure.

parameter: A name used inside a procedure to refer to the value passed as an
argument.

flow of execution: The order in which instructions are executed during a pro-
gram run.

local variable: A variable defined inside a procedure. A local variable can
only be used inside its procedure invocation.

Chapter 4

Conditionals and recursion

4.1 The remainder function

The remainder function works on integers and yields the remainder when the
first operand is divided by the second.

? print remainder 7 3

1

So 7 divided by 3 is 2 with 1 left over.

The remainder function turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another—if remainder :x :y is
zero, then x is divisible by y.

4.2 Boolean expressions

A boolean expression is an expression that is either true or false. In Logo,
an expression that is true has the value true, and an expression that is false
has the value false.

The predicate equalp compares two values and produces a boolean expression:

? print equalp 5 5

true

? print equalp 5 6

false

In the first command, the two arguments are equal, so the expression evaluates
to true; in the second statement, 5 is not equal to 6, so we get false.

The equalp function is one of the three numerical comparison predicates; the
other two are:

26 Conditionals and recursion

? print lessp 5 6

true

? print greaterp 5 6

false

We have already seen a number of predicates, such as those that check the type
of a piece of information (wordp, numberp, listp, arrayp); we’ll introduce
the others as needed in the following chapters.

4.3 Logical functions

There are three logical functions: and, or, and not. The semantics (meaning)
of these functions is similar to their meaning in English.

and accepts two arguments; each argument must be either the word true or the
word false; it returns true if both its inputs are true, false if either of them
is false.

or accepts two arguments; each argument must be either the word true or the
word false; it returns true if at least one input is true, false if both inputs
are false.

Both and and or, when enclosed in parentheses, accept more than two inputs.

not accepts one argument that must be either the word true or the word false;
it returns true if its input is false, false if it’s true.

make "x 3

make "y 6

? print and lessp :x 6 greaterp :x 2

true

? print or lessp :x 6 greaterp :x 4

true

? print not lessp :x 2

true

? print (and lessp :x 6 greaterp :x 2 greaterp :y 5 lessp :y 8)

true

? print and equalp remainder :y 3 0 equalp remainder :y 2 0

true

For example, the last instruction tests if y is divisible by 2 and 3.

4.4 Conditional execution

In order to write useful programs, we almost always need the ability to check
conditions and change the behavior of the program accordingly. Conditional
procedures give us this ability. The simplest form is the if command:

4.5 Alternative execution 27

? make "x 3

? if greaterp :x 0 [print "|x is positive|]

x is positive

if is a command with two arguments. The first must be a boolean expression,
called the condition. The second is a list containing logo instructions. If the
first input returns a value true, then the instructions in the following list are
evaluated. If not, nothing happens.

4.5 Alternative execution

ifelse is a command such that, depending on the value of a boolean expression,
two different alternatives are executed.

The command looks like this:

? make "x 8

? ifelse equalp remainder :x 2 0 [print "even][print "odd]

even

If the remainder when x is divided by 2 is 0, then we know that x is even,
and the program displays a message to that effect. If the condition is false, the
second list is evaluated. The alternatives are called branches, because they are
branches in the flow of execution.

4.6 Chained conditionals

Sometimes there are more than two possibilities and we need more than two
branches. In Logo one would normally express a computation like that using a
combination of if with stop:

to printPositiveNegative :x

if greaterp :x 0 [(print :x "is "positive) stop]

if equalp :x 0 [print "zero stop]

if lessp :x 0 [(print :x "is "negative) stop]

end

stop is a command that ends the execution of the procedure in which it appears.
In the example, each condition is checked in order. If the first is false, the next
is checked, and so on. If one of them is true, the procedure prints a message
and then the command stop ends the procedure’s execution.

? printPositiveNegative 4

4 is positive

? printPositiveNegative 0

zero

? printPositiveNegative -4

-4 is negative

28 Conditionals and recursion

4.7 Nested conditionals

One conditional can also be nested within another. We could have written the
last example as follows:

to printPositiveNegative :x

ifelse greaterp :x 0 [(print :x "is "positive)][

ifelse equalp :x 0 [print "zero][(print :x "is "negative)]]

end

The outer conditional contains two branches. The first branch contains a sim-
ple print instruction. The second branch contains another ifelse instruction,
which has two branches of its own. Those two branches are both print instruc-
tions, although they could have been conditional instructions as well.

Nested conditionals become difficult to read very quickly, and in general it is a
good idea to avoid them when you can.

Logical operators often provide a way to simplify nested conditional instructions.
For example, we can rewrite the following code using a single conditional:

to example :x

if greaterp :x 0 [

if lessp :x 10 [print "|0<x<10|]]

end

The print instruction is executed only if we make it past both the conditionals,
so we can use the and logical function:

to example :x

if and greaterp :x 0 lessp :x 10 [print "|0<x<10|]

end

4.8 Recursion

We mentioned that it is legal for one procedure to invoke another, and you have
seen several examples of that. We neglected to mention that it is also legal for
a function to call itself. It may not be obvious why that is a good thing, but it
turns out to be one of the most magical and interesting things a program can
do. For example, look at the following command:

to countdown :n

if equalp :n 0 [print "Blastoff! stop]

print :n

countdown difference :n 1

end

countdown expects the parameter, n, to be a positive integer. If n is 0, it prints
the word “Blastoff!” and then stops. Otherwise, it prints n and then calls a
function named countdown—itself—passing difference n 1 as an argument.

4.8 Recursion 29

What happens if we call this function like this:

? countdown 3

The execution of countdown begins with n=3, and since n is not 0, it prints the
value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is not 0,
it prints the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n
is not 0, it prints the value 1, and then calls itself...

The execution of countdown begins with n=0, and
since n is 0, it prints the word, “Blastoff!”; it
then invokes the command stop that stops the
execution of the procedure.

The countdown that got n=1 has no more instructions to
execute and therefore stops.

The countdown that got n=2 has no more instructions to execute
and therefore stops.

The countdown that got n=3 has no more instructions to execute and therefore
stops.

So, this is what we get:

3

2

1

Blastoff!

The process of a function calling itself is recursion, and such functions are said
to be recursive.

Invoking trace, Logo shows us the sequence of procedure invocations we have
described verbally:

? trace "countdown

? countdown 3

(countdown 3)

3

(countdown 2)

2

(countdown 1)

1

(countdown 0)

Blastoff!

countdown stops

countdown stops

countdown stops

countdown stops

?

The condition in the first line of countdown is called the base case.

30 Conditionals and recursion

4.9 Infinite recursion

If a recursion never reaches a base case, it goes on making recursive calls forever,
and the program never terminates. This is known as infinite recursion, and
it is generally not considered a good idea.

If we invoke countdown with a decimal number, we will never reach the base
case, that is n=0.

? countdown 2.3

2.3

1.3

0.3

-0.7

-1.7

-2.7

-3.7

-4.7

In this example we interrupted countdown after a few iterations, otherwise it
would have kept on printing negative numbers for a long time!

4.10 Keyboard input

The programs we have written so far are a bit rude in the sense that they accept
no input from the user. They just do the same thing every time.

Logo provides several built-in procedures that get input from the keyboard. The
simplest is called readlist. When this function is called, the program stops
and waits for the user to type something. When the user presses Return or the
Enter key, the program resumes and readlist returns what the user typed as
a list:

? make "input readlist

This is a list

? show :input

[This is a list]

Before calling readlist, it is a good idea to print a message telling the user
what to input. This message is called a prompt:

? type [What’s your name?] make "input readlist

What’s your name? Arthur, King of the Britons!

? print :input

Arthur, King of the Britons!

4.11 Glossary

boolean expression: An expression that returns either true or false.

4.11 Glossary 31

condition: The boolean expression in a conditional procedure that determines
which branch is executed.

recursion: The process of calling the procedure that is currently executing.

base case: A branch of the conditional statement in a recursive procedure that
does not result in a recursive call.

infinite recursion: A procedure that calls itself recursively without ever reach-
ing the base case. Eventually, an infinite recursion causes a runtime error.

prompt: A visual cue that tells the user to input data.

32 Conditionals and recursion

Chapter 5

Functions

5.1 Return values

Some of the built-in procedures we have used, such as the math functions or
functions operating on words, return values.

? print exp 1

2.71828182845905

? print first "ER

E

But so far, none of the procedures we have written has returned a value.

In this chapter, we are going to write procedures that return values. The first
example is area, which returns the area of a circle with the given radius:

to area :radius

local "temp

make "temp product 3.14159 power :radius 2

output :temp

end

output is a command that ends the execution of the procedure in which it
appears; the procedure returns the argument of output to another procedure,
as in the following example.

? print area 2

12.56636

output’s argument can be arbitrarily complicated, so we could have written
this function more concisely:

to area :radius

output product 3.14159 power :radius 2

end

34 Functions

On the other hand, temporary variables like temp often make debugging
easier.

Sometimes it is useful to have multiple output commands, one in each branch
of a conditional:

to absoluteValue :x

ifelse lessp :x 0 [output minus :x] [output :x]

end

Since these output commands are in an alternative conditional, only one will be
executed. As soon as one is executed, the function terminates without executing
any subsequent instructions.

5.2 Program development

At this point, you should be able to look at complete functions and tell what
they do. As you write larger functions, you might start to have more difficulty,
especially with runtime and semantic errors.

To deal with increasingly complex programs, we are going to suggest a technique
called incremental development. The goal of incremental development is to
avoid long debugging sessions by adding and testing only a small amount of
code at a time.

As an example, suppose you want to find the distance between two points,
given by the coordinates (x1, y1) and (x2, y2). By the Pythagorean theorem,
the distance is:

distance =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

The first step is to consider what a distance function should look like in Logo.
In other words, what are the inputs (parameters) and what is the output (return
value)?

In this case, the two points are the inputs, which we can represent using four
parameters. The return value is the distance, which is a floating-point value.

Already we can write an outline of the function:

to distance :x1 :y1 :x2 :y2

output 0.0

end

Obviously, this version of the function doesn’t compute distances; it always
returns zero. But it is syntactically correct, and it will run, which means that
we can test it before we make it more complicated.

To test the new function, we call it with sample values:

5.2 Program development 35

? print distance 1 2 4 6

0.0

We chose these values so that the horizontal distance equals 3 and the vertical
distance equals 4; that way, the result is 5 (the hypotenuse of a 3-4-5 triangle).
When testing a function, it is useful to know the right answer.

At this point we have confirmed that the function is syntactically correct, and
we can start adding lines of code. After each incremental change, we test the
function again. If an error occurs at any point, we know where it must be—in
the last line we added.

A logical first step in the computation is to find the differences x2 − x1 and
y2−y1. We will store those values in temporary variables named dx and dy and
print them.

to distance :x1 :y1 :x2 :y2

local "dx

local "dy

make "dx difference :x2 :x1

make "dy difference :y2 :y1

(print "|dx is | :dx)

(print "|dy is | :dy)

output 0.0

end

If the function is working, the outputs should be 3 and 4. If so, we know that the
function is getting the right parameters and performing the first computation
correctly. If not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:

to distance :x1 :y1 :x2 :y2

local "dx

local "dy

local "dsquared

make "dx difference :x2 :x1

make "dy difference :y2 :y1

make "dsquared sum power :dx 2 power :dy 2

(print "|dsquared is | :dsquared)

output 0.0

end

Notice that we removed the print instructions we wrote in the previous step.
Code like that is called scaffolding because it is helpful for building the program
but is not part of the final product.

Again, we would run the program at this stage and check the output (which
should be 25).

Finally, we can use the sqrt function to compute and return the result:

36 Functions

to distance :x1 :y1 :x2 :y2

local "dx

local "dy

local "dsquared

local "result

make "dx difference :x2 :x1

make "dy difference :y2 :y1

make "dsquared sum power :dx 2 power :dy 2

make "result sqrt :dsquared

output :result

end

If that works correctly, you are done. Otherwise, you might want to print the
value of result before the return statement.

When you start out, you should add only a line or two of code at a time. As
you gain more experience, you might find yourself writing and debugging bigger
chunks. Either way, the incremental development process can save you a lot of
debugging time.

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At
any point, if there is an error, you will know exactly where it is.

2. Use temporary variables to hold intermediate values so you can output
and check them.

3. Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple instructions into compound expressions,
but only if it does not make the program difficult to read.

In the preceding example, we could consolidate istructions in the following way:

to distance :x1 :y1 :x2 :y2

(output sqrt

sum (power difference :x2 :x1 2) (power difference :y2 :y1 2))

end

Notice that we can always use parentheses when we feel it helps clarifying com-
plex expressions.

5.3 Predicates

Functions can return boolean values, which is often convenient for hiding com-
plicated tests inside functions. As you should remember, we call those functions
predicates. For example:

to divisiblep :x :y

output equalp remainder :x :y 0

end

5.4 More recursion 37

The name of this function is divisiblep. It is common to give predicates
names that end with p or with a ?. divisiblep returns either true or false
to indicate whether the x is or is not divisible by y.

This session shows the new function in action:

? print divisiblep 6 4

false

? print divisiblep 6 3

true

5.4 More recursion

So far, you have only learned a small subset of Logo, but you might be interested
to know that this subset is a complete programming language, which means
that anything that can be computed can be expressed in this language. Any
program ever written could be rewritten using only the language features you
have learned so far (actually, you would need a few commands to control devices
like the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing,
one of the first computer scientists (some would argue that he was a math-
ematician, but a lot of early computer scientists started as mathematicians).
Accordingly, it is known as the Turing Thesis. If you take a course on the
Theory of Computation, you will have a chance to see the proof.

To give you an idea of what you can do with the tools you have learned so
far, we’ll evaluate a few recursively defined mathematical functions. A recursive
definition is similar to a circular definition, in the sense that the definition
contains a reference to the thing being defined. A truly circular definition is not
very useful:

frabjuous: An adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other
hand, if you looked up the definition of the mathematical function factorial, you
might get something like this:

0! = 1

n! = n(n− 1)!

This definition says that the factorial of 0 is 1, and the factorial of any other
value, n, is n multiplied by the factorial of n− 1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together,
3! equals 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a
Logo program to evaluate it. The first step is to decide what the parameters
are for this function. With little effort, you should conclude that factorial
takes a single parameter:

38 Functions

to factorial :n

end

If the argument happens to be 0, all we have to do is return 1:

to factorial :n

if equalp :n 0 [output 1]

end

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n− 1 and then multiply it by n:

to factorial :n

if equalp :n 0 [output 1]

output product :n factorial difference :n 1

end

The flow of execution for this program is similar to the flow of countdown. If
we invoke the instruction print factorial 3:

Since 3 is not 0, we calculate the factorial of n-1...

Since 2 is not 0, we calculate the factorial of n-1...

Since 1 is not 0, we calculate the factorial of n-1...

Since 0 is 0, we return 1 without making any more
recursive calls.

The return value (1) is multiplied by n, which is 1, and
the result is returned.

The return value (1) is multiplied by n, which is 2, and the result is
returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes
the return value of the function call that started the whole process.

We may also describe the flow of execution as the progressive composition of a
number of arithmetical expressions:

(product 3 (factorial 2))

(product 3 (product 2 (factorial 1)))

(product 3 (product 2 (product 1 (factorial 0))))

(product 3 (product 2 (product 1 1)))

(product 3 (product 2 1))

(product 3 2)

6

Finally, here is what the Logo trace looks like for this sequence of function calls:

? print factorial 3

(factorial 3)

(factorial 2)

(factorial 1)

5.5 Leap of faith 39

(factorial 0)

factorial stops

factorial stops

factorial stops

factorial stops

6

5.5 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly
become labyrinthine. An alternative is what we call the “leap of faith.” When
you come to a function call, instead of following the flow of execution, you
assume that the function works correctly and returns the appropriate value.

In fact, you are already practicing this leap of faith when you use built-in func-
tions. When you call cos or exp, you don’t examine the implementations of
those functions. You just assume that they work because the people who wrote
the built-in libraries were good programmers.

The same is true when you call one of your own functions. For example, we
wrote a function called divisiblep that determines whether one number is
divisible by another. Once we have convinced ourselves that this function is
correct—by testing and examining the code—we can use the function without
looking at the code again.

The same is true of recursive programs. When you get to the recursive call,
instead of following the flow of execution, you should assume that the recursive
call works (yields the correct result) and then ask yourself, “Assuming that I
can find the factorial of n− 1, can I compute the factorial of n?” In this case,
it is clear that you can, by multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when
you haven’t finished writing it, but that’s why it’s called a leap of faith!

5.6 One more example

After factorial, the most common example of a recursively defined mathe-
matical function is fibonacci, which has the following definition:

fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(n) = fibonacci(n− 1) + fibonacci(n− 2);

Translated into Logo, it looks like this:

to fibonacci :n

if equalp :n 0 [output 0]

40 Functions

if equalp :n 1 [output 1]

output sum fibonacci difference :n 1 fibonacci difference :n 2

end

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. See how complex the trace of fibonacci 5 already is:

? show fibonacci 4

(fibonacci 4)

(fibonacci 3)

(fibonacci 2)

(fibonacci 1)

fibonacci outputs 1

(fibonacci 0)

fibonacci outputs 0

fibonacci outputs 1

(fibonacci 1)

fibonacci outputs 1

fibonacci outputs 2

(fibonacci 2)

(fibonacci 1)

fibonacci outputs 1

(fibonacci 0)

fibonacci outputs 0

fibonacci outputs 1

fibonacci outputs 3

3

But according to the leap of faith, if you assume that the two recursive calls
work correctly, then it is clear that you get the right result by adding them
together.

5.7 Checking types

If we call factorial giving it 1.5 as an argument, the function never stops.

to factorial :n

if equalp :n 0 [output 1]

output product :n factorial difference :n 1

end

The problem is that the values of n miss the base case —equalp :n 0.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From
there, it gets smaller and smaller, but it will never be 0.

We have two choices. We can try to generalize the factorial function to work
with floating-point numbers, or we can make factorial check the type of its
parameter. The first option is called the gamma function and it’s a little beyond
the scope of this book. So we’ll go for the second.

While we’re at it, we also make sure the parameter is positive:

5.8 Glossary 41

to factorial :n

if not numberp :n [

print [Factorial is only defined for numbers]

output "false]

if lessp :n 0 [

print [Factorial is only defined for positive integers]

output "false]

if not equalp :n int :n [

print [Factorial is only defined for integers]

output "false]

if equalp :n 0 [output 1]

output product :n factorial difference :n 1

end

Now we have four base cases. The first catches non numeric words. The second
catches negative numbers. The third catches nonintegers, using the int func-
tion, that returns the integer part of a number. In each case, the program prints
an error message and returns false:

? show factorial "guido

Factorial is only defined for numbers

false

? show factorial 1.1

Factorial is only defined for integers

false

? show factorial -1

Factorial is only defined for positive integers

false

?

If we get past the three checks, then we know that n is a positive integer, and
we can prove that the recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first
three conditionals act as guardians, protecting the code that follows from val-
ues that might cause an error. The guardians make it possible to prove the
correctness of the code.

5.8 Glossary

return value: The value provided as the result of a function call.

temporary variable: A variable used to store an intermediate value in a com-
plex calculation.

incremental development: A program development plan intended to avoid
debugging by adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of
the final version.

42 Functions

guardian: A condition that checks for and handles circumstances that might
cause an error.

Chapter 6

Iteration

6.1 Multiple assignment

As you may have discovered, it is legal to make more than one assignment to
the same variable. A new assignment makes an existing variable refer to a new
value (and stop referring to the old value).

? make "bruce 5

? print :bruce

5

? make "bruce 7

? print :bruce

7

The two print commands display first 5 and then 7, because the first time
bruce is printed, his value is 5, and the second time, his value is 7.

Although multiple assignment is frequently helpful, you should use it with cau-
tion. If the values of variables change frequently, it can make the code difficult
to read and debug.

6.2 The while command

Computers are often used to automate repetitive tasks. Repeating identical or
similar tasks without making errors is something that computers do well and
people do poorly.

We have seen a program, countdown, that uses recursion to perform repetition,
which is also called iteration. Because iteration is so common, Logo provides
several language features to make it easier. The first feature we are going to
look at is the while command.

Here is what countdown looks like with a while statement:

44 Iteration

to countdown :n

while [greaterp :n 0] [print :n make "n difference :n 1]

print "Blastoff!

end

Since we removed the recursive call, this function is not recursive.

You can almost read the while command as if it were English. It means, “While
n is greater than 0, continue displaying the value of n and then reducing the
value of n by 1. When you get to 0, display the word Blastoff!”

More formally, here is the flow of execution for a while command:

1. Evaluate the first expression list —that must evaluate to true or false—
called the condition.

2. If the condition is false, exit the while command and continue execution
at the next instruction.

3. If the condition is true, execute each of the instructions in the second list,
the body, and then go back to step 1.

This type of flow is called a loop because the third step loops back around to
the top. Notice that if the condition is false the first time through the loop, the
instructions inside the loop are never executed.

The body of the loop should change the value of one or more variables so that
eventually the condition becomes false and the loop terminates. Otherwise the
loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop terminates because we
know that the value of n is finite, and we can see that the value of n gets smaller
each time through the loop, so eventually we have to get to 0 if n initially is an
interger. In other cases, it is not so easy to tell:

to sequence :n

while [not equalp :n 1] [print :n

ifelse equalp remainder :n 2 0 [

make "n quotient :n 2][make "n sum product :n 3 1]]

end

The condition for this loop is not equalp :n 1, so the loop will continue until
n is 1, which will make the condition false.

Each time through the loop, the program outputs the value of n and then checks
whether it is even or odd. If it is even, the value of n is divided by 2. If it is odd,
the value is replaced by n*3+1. For example, if the starting value (the argument
passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof
that n will ever reach 1, or that the program terminates. For some particular

6.3 Tables 45

values of n, we can prove termination. For example, if the starting value is a
power of two, then the value of n will be even each time through the loop until
it reaches 1. The previous example ends with such a sequence, starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to prove
it or disprove it!

6.3 Tables

One of the things loops are good for is generating tabular data. Before comput-
ers were readily available, people had to calculate logarithms, sines and cosines,
and other mathematical functions by hand. To make that easier, mathematics
books contained long tables listing the values of these functions. Creating the
tables was slow and boring, and they tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This
is great! We can use the computers to generate the tables, so there will be no
errors.” That turned out to be true (mostly) but shortsighted. Soon thereafter,
computers and calculators were so pervasive that the tables became obsolete.

Well, almost. For some operations, computers use tables of values to get an
approximate answer and then perform computations to improve the approxi-
mation. In some cases, there have been errors in the underlying tables, most
famously in the table the Intel Pentium used to perform floating-point division.

Although a log table is not as useful as it once was, it still makes a good
example of iteration. The following program outputs a sequence of values in the
left column and their logarithms in the right column:

to lntable

local "x

make "x 1

while [lessp :x 10] [

type form :x 4 0

print form ln :x 12 8

make "x sum :x 1

]

end

The function form accepts three inputs: a number, its width and the number
of digits after the decimal point. It is useful for making columns of text line up,
as in the output of the previous program:

1 0.00000000

2 0.69314718

3 1.09861229

4 1.38629436

5 1.60943791

6 1.79175947

46 Iteration

7 1.94591015

8 2.07944154

9 2.19722458

If these values seem odd, remember that the ln function uses base e. Since
powers of two are so important in computer science, we often want to find
logarithms with respect to base 2. To do that, we can use the following formula:

log2 x =
logex

loge2
(6.1)

We can change the preceding function accordingly:

to lntable

local "x

make "x 1

while [lessp :x 10] [

type form :x 4 0

print form quotient ln :x ln 2 12 8

make "x sum :x 1

]

end

yielding:

1 0.00000000

2 1.00000000

3 1.58496250

4 2.00000000

5 2.32192809

6 2.58496250

7 2.80735492

8 3.00000000

9 3.16992500

We can see that 1, 2, 4, and 8 are powers of two because their logarithms base
2 are round numbers.

6.4 Two-dimensional tables

A two-dimensional table is a table where you read the value at the intersection
of a row and a column. A multiplication table is a good example. Let’s say you
want to print a multiplication table for the values from 1 to 6.

A good way to start is to write a procedure that prints the multiples of 2, all
on one line:

to printMultiples2

localmake "i 1

while [lessp :i 7] [

6.5 Generalization 47

(type product 2 :i tab)

make "i sum :i 1]

print "

end

The first command, localmake, assigns the value 1 to the local variable i, being
effectively the combination of the commands local and make.

As the loop executes, the value of i increases from 1 to 6. When i is 7, the loop
terminates. Each time through the loop, it displays the value of 2*i, followed
by a tabulation, the output of the funtion tab.

We defined tab in the following way:

to tab

output char 9

end

The char function accepts an integer between 0 and 255 as input and outputs
the character represented in the ASCII code by that number. Therefore, the
tab function outputs the tabulation character.

In printMultiples2, after the loop completes, the print command starts a
new line.

The effect of the procedure is:

2 4 6 8 10 12

So far, so good. The next step is to generalize.

6.5 Generalization

Generalization means taking something specific, such as printing the multiples
of 2, and making it more general, such as printing the multiples of any integer.

This procedure generalizes the previous procedure:

to printMultiples :n

localmake "i 1

while [lessp :i 7] [

(type product :n :i tab)

make "i sum :i 1]

print "

end

To generalize, all we had to do was replace the value 2 with the parameter n.

If we call this procedure with the argument 2, we get the same effect as before.
With the argument 3, the result is:

3 6 9 12 15 18

48 Iteration

With the argument 4:

4 8 12 16 20 24

By now you can probably guess how to print a multiplication table—by calling
printMultiples repeatedly with different arguments. In fact, we can define
another procedure:

to printMultTable

localmake "i 1

while [lessp :i 7] [

printMultiples :i

make "i sum :i 1]

end

Notice how similar this loop is to the one inside printMultiples.

The output of this program is a multiplication table:

? printMultTable

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

6.6 Local variables

You might be wondering how we can use the same variable, i, in both
printMultiples and printMultTable. Doesn’t it cause problems when one
of the procedures changes the value of the variable?

The answer is no, because the i in printMultiples and the i in
printMultTable are not the same variable, because we have declared them
local in each procedure definition.

The value of i in printMultTable goes from 1 to 6. Each time through the
loop, printMultTable calls printMultiples with the current value of i as an
argument. That value gets assigned to the parameter n.

Inside printMultiples, the value of i goes from 1 to 6. Changing this variable
has no effect on the value of i in printMultTable.

It is common and perfectly legal to have different local variables with the same
name. In particular, names like i and j are used frequently as loop variables. If
you avoid using them in one procedure just because you used them somewhere
else, you will probably make the program harder to read.

6.7 More generalization 49

6.7 More generalization

As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the six-by-six table. You could
add a parameter to printMultTable:

to printMultTable :high

localmake "i 1

while [lessp :i sum :high 1] [

printMultiples :i

make "i sum :i 1]

end

We replaced the value 6 with the parameter high. If we call printMultTable
with the argument 7, it displays:

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

This is fine, except that we probably want the table to be square—with the
same number of rows and columns. To do that, we add another parameter to
printMultiples to specify how many columns the table should have.

Just to be annoying, we call this parameter high, demonstrating that different
functions can have parameters with the same name (just like local variables).
Here’s the whole program:

to printMultiples :n :high

localmake "i 1

while [lessp :i sum :high 1] [

(type product :n :i tab)

make "i sum :i 1]

print "

end

to printMultTable :high

localmake "i 1

while [lessp :i sum :high 1] [

printMultiples :i :high

make "i sum :i 1]

end

to tab

output char 9

end

50 Iteration

Notice that when we added a new parameter, we had to change the first line of
the function (the function heading), and we also had to change the place where
the function is called in printMultTable.

As expected, this program generates a square seven-by-seven table:

1 2 3 4 5 6 7

2 4 6 8 10 12 14

3 6 9 12 15 18 21

4 8 12 16 20 24 28

5 10 15 20 25 30 35

6 12 18 24 30 36 42

7 14 21 28 35 42 49

When you generalize a function appropriately, you often get a program with
capabilities you didn’t plan. For example, you might notice that, because ab =
ba, all the entries in the table appear twice. You could save ink by printing only
half the table. To do that, you only have to change one line of printMultTable.
Change

printMultiples :i :high

to

printMultiples :i :i

and you get

1

2 4

3 6 9

4 8 12 16

5 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

6.8 Glossary

multiple assignment: Making more than one assignment to the same variable
during the execution of a program.

iteration: Repeated execution of a set of instructions using either a recursive
function call or a loop.

loop: An instruction or group of instructions that execute repeatedly until a
terminating condition is satisfied.

infinite loop: A loop in which the terminating condition is never satisfied.

loop variable: A variable used as part of the terminating condition of a loop.

6.8 Glossary 51

encapsulate: To divide a large complex program into components (like func-
tions) and isolate the components from each other (by using local variables,
for example).

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter, we
demonstrated a style of development based on developing code to do sim-
ple, specific things and then encapsulating and generalizing.

52 Iteration

Chapter 7

Words

7.1 A compound data type

Words are examples of compound data types. Depending on what we are
doing, we may want to treat a compound data type as a single thing, or we may
want to access its parts. This ambiguity is useful.

7.2 Selecting characters

The item function —seen in chapter 3— selects a single character from a word.

? print item 1 "banana

b

The expression item 1 "banana selects character number 1 from the word
banana. The first letter of banana is b.

On the other hand, in recursive functions we would probably use first and
butfirst, that in combination allow us to select every character of a word.

7.3 Words length

The count function returns the number of characters in a word:

? print count "banana

6

To get the last letter of a word, you may use the count function:

? print item count "banana "banana

a

54 Words

On the other hand, Logo provides two primitives to get the first and last char-
acter of a word:

? print last "banana

a

? print first "banana

b

? print butfirst "banana

anana

? print butlast "banana

banan

The last two examples extract all the word’s characters except for the first or
the last, using the functions butfirst and butlast.

7.4 Traversal, the foreach loop and recursion

A lot of computations involve processing a word one character at a time. Often
they start at the beginning, select each character in turn, do something to it,
and continue until the end. This pattern of processing is called a traversal.
One way to encode a traversal is with a while statement:

to traversal :w

localmake "n count :w

localmake "index 1

while [lessequalp :index :n][

print item :index :w

make "index sum :index 1

]

end

This loop traverses the word and displays each letter on a line by itself. The
loop condition is lessequalp :index count :w, so when index is equal to the
length of the string plus one, the expression returns false, and the body of the
loop is not executed.

lessequalp is not a primitive predicate, but can be easily defined:

to lessequalp :x :y

output or lessp :x :y equalp :x :y

end

Using an index to traverse a set of values is so common that Logo provides an
alternative, simpler syntax—the foreach loop:

to traversal :w

foreach :w [print ?]

end

Each time through the loop, a character in the word, indicated by the ? symbol,
is printed. The loop continues until no characters are left.

The foreach command has a number of different syntactic forms. A full expla-
nation is premature at this point, here we only show you another useful usage:

7.5 Word comparison 55

? foreach "abc [print #]

1

2

3

The # symbol represents the position in the input word of the character currently
printed.

On the other hand, we could have defined the following recursive procedure:

to traversal :w

if equalp :w " [stop]

print first :w

traversal butfirst :w

end

Which solution is better is largely a matter of taste. Moreover, at a deeper level,
both while and foreach are defined in terms of recursive operations, being just
syntactic forms that make programs easier to understand.

7.5 Word comparison

The comparison function equalp works on words. To see if two words are equal:

? show equalp "anna "clara

false

? show equalp "uno "uno

true

Another comparison function is beforep, that compares words in alphabetical
order (in ASCII collating order):

? show beforep "can "cat

true

? show beforep "11 "2

true

? show not beforep "cans "can

true

? show beforep "CANS "can

false

You should be aware, though, that Logo by default does not handle upper
and lowercase letters in the same way as the ASCII standard, in which all the
uppercase letters come before all the lowercase letters. To duplicate the ASCII
collating sequence you should set the variable caseignoredp to false:

? make "caseignoredp "false

? show beforep "CANS "can

true

56 Words

7.6 Words are immutable

Words are immutable, which means you can’t change an existing word. The
best you can do is create a new word that is a variation of the original:

? make "greeting "|Hello, world!|

? make "newGreeting word "J butfirst :greeting

? print :newGreeting

Jello, world!

The solution here is to concatenate a new first letter onto a part of greeting.
This operation has no effect on the original word.

7.7 Finding the position of a character

What does the following function do?

to findIndex :w :ch

localmake "n count :w

localmake "index 1

while [lessequalp :index :n] [

if equalp :ch item :index :w [output :index]

make "index sum :index 1

]

output "false

end

In a sense, findIndex is the opposite of the item function. Instead of taking
an index and extracting the corresponding character, it takes a character and
finds the index where that character first appears. If the character is not found,
the function returns false.

This pattern of computation is sometimes called a “eureka” traversal because as
soon as we find what we are looking for, we can cry “Eureka!” and stop looking.

We can write this function using recursion, like this:

to findIndex :w :ch [:index 1]

if equalp :w " [output "false]

if equalp :ch first :w [output :index]

output (findIndex butfirst :w :ch sum :index 1)

end

This function has a number of novel features. In the definition, we use an
optional parameter index with default value 1. As the number of default pa-
rameters of the function is 2, when we invoke it in its body, we have to enclose
it in parentheses. The index parameter acts as a counter, incrementing each
time findIndex is invoked.

We can examine the flow of execution of findIndex using the command trace:

7.8 Looping and counting 57

? show findIndex "guido "i

(findIndex "guido "i)

(findIndex "uido "i 2)

(findIndex "ido "i 3)

findIndex outputs 3

findIndex outputs 3

findIndex outputs 3

3

Finally, findIndex can be defined using foreach:

to findIndex :w :ch

foreach :w [if equalp ? :ch [output #]

output "false

end

7.8 Looping and counting

The following function is a variation of findIndex and counts the number of
times a character appears in a word:

to countChar :w :ch

localmake "n 0

foreach :w [if equalp ? :ch [make "n sum :n 1]]

output :n

end

This program demonstrates another pattern of computation called a counter.
The variable n is initialized to 0 and then incremented each time ch is found.
When the loop exits, n contains the result—the total number of characters ch.

A counter can be easily expressed as a recursive function:

to countChar :w :ch [:n 0]

if equalp :w " [output :n]

if equalp first :w :ch [output (countChar butfirst :w :ch sum :n 1)]

output (countChar butfirst :w :ch :n)

end

7.9 Other functions

In this section we illustrate a few other functions useful to assemble and dissect
words.

To convert characters from upper to lower case and viceversa we can use
lowercase and uppercase; to reverse them reverse.

? print lowercase "|Hello, World!|

hello, world!

? print uppercase "|Hello, World!|

58 Words

HELLO, WORLD!

? print reverse "|Hello, World!|

!dlroW ,olleH

memberp is a predicate that tests if a character is part (a member) of a word;
member is a function that outputs the portion of a word from the first instance
of the character for which memberp would be true to the end of the word:

? print memberp "e "Michele

true

? print member "e "Michele

ele

? print memberp "1 "234199

true

? print member "1 "234199

199

substringp is a predicate that outputs true if its first argument is a substring
of its second argument.

? print substringp "ea "|Logo is easy!|

true

? print substringp "ch "MicheleMichele

true

With substringp we can easily write a function —let’s call it findString—
that finds the position of the first substring —from left to right— inside a word:

? show findString "LogoLogoLogo "oL

[4 5]

? make "caseignoredp "false

? show findString "LogoLogoLogo "ol

false

A basic implementation of findString is the following:

to findString :w :st

if not substringp :st :w [output "false]

localmake "rightindex findr :w :st

output sentence difference sum :rightindex 1 count :st :rightindex

end

to findr :w :st :pos

if substringp :st :w [output (findr butlast :w :st difference :pos 1)]

output :pos

end

findString checks if the string st is in fact a part of the word w. If so, the
procedure calculates the position of the end of the first occurrence of st inside
w. It then outputs a list composed of two numeric elements: the position of the
beginning of the first occurrence of st inside w (the left index); the position of
the end of the first occurrence of st inside w (the right index).

findr outputs the right index: by now it should be easy to follow its flow of
execution.

7.10 Rot13 59

7.10 Rot13

Rot13 is a simple substitution cipher, that is an algorithm to translate each
letter in a word into another letter, forming a coded message. Rot13 is used
for Usenet news, not really to prevent anyone from reading a message but to
require a deliberate choice to read what someone may find offensive.

? print rot13 "|This is a sequence of characters|

Guvf vf n frdhrapr bs punenpgref

? print rot13 "|Guvf vf n frdhrapr bs punenpgref|

This is a sequence of characters

As you can see, we can use the same algorithm to code and decode the message.
Specifically, every letter in the message is rotated to the 13th next letter in the
alphabet. Decrypting turns out to be the same function —rotating to the 13th
next letter. For example, e becomes r and r rotates forward to e.

Our two implementations of Rot13 allows for uppercase and lowercase charac-
ters.

The first follows the usual recursive pattern:

to rot13 :w

localmake "caseignoredp "false

output rot13word :w

end

to rot13word :w

if equalp :w " [output "]

output word rot13char first :w rot13word butfirst :w

end

to rot13char :c [

:cl "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz][

:co "NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm]

if emptyp :cl [output :c]

if equalp :c first :cl [output first :co]

output (rot13char :c butfirst :cl butfirst :co)

end

The function rot13 just sets caseignoredp locally to false and outputs the
value returned by rot13word.

The function rot13word recursively combines the rotated characters using the
word function.

The real job is done by rot13char that accepts a character as input. rot13char
defines two optional parameters: cl is a word containing 52 distinct uppercase
and lowercase characters, co is a word containing the coded characters in the
same order. If the input character is equal to cl’s first character, rot13char
outputs the first coded character. If the input character doesn’t match cl’s last
character, the procedure outputs its input. Otherwise rot13char is called again
with one character less in cl and co.

60 Words

It may be interesting to compare this solution with the following approach:

to rot13 :w

output rot13word :w

end

to rot13word :w

if equalp :w " [output "]

output word rot13char first :w rot13word butfirst :w

end

to rot13char :c

if and greaterp ascii :c 64 lessp ascii :c 91 [

output char sum remainder difference ascii :c 52 26 65]

if and greaterp ascii :c 96 lessp ascii :c 123 [

output char sum remainder difference ascii :c 84 26 97]

output :c

end

The new version of rot13 simply outpus the value returned by rot13word.

The function rot13word, as before, recursively combines the rotated characters
using the word function.

The real job is still done by rot13char that accepts a character as input.

To understand its working, we need to learn about two new functions.

ascii outputs an integer, between 0 and 255, that represents the input character
in the ASCII code. Conversely, char outputs a character corresponding to the
ASCII code in the input.

A few examples will clarify these definitions:

? print char 97

a

? print char 122

z

? print ascii "a

97

? print ascii "z

122

In rot13char first we test if a character is uppercase —ASCII code between
65 and 90— or lowercase —ASCII code between 97 to 122. We then apply an
appropriate rotation formula to the ASCII code. Finally rot13char outputs
the character corresponding to this transformed ASCII code.

The two formulas look formidable but an example should convince you that they
just apply a sequence of arithmetic operations that rotate a given character to
the 13th next letter in the alphabet.

Consider the transformation of character c into p and viceversa.

7.11 Glossary 61

From 99 —the value of the ASCII code of the letter c— we subtract 84, ob-
taining 15. We then calculate the remainder of the division of 15 by 26, equal
to 15. Finally we add this value to 97, the ASCII code for a, getting 112, the
ASCII code for p. What you should notice is that this sequence of operation is
equivalent to adding 13 to the ASCII code value of c.

Likewise, from the ASCII code of p we subtract 84, obtaining 28. We then add
2 —the remainder of the division of 28 by 26— to 97 getting 99, the value of
the ASCII code of the letter c.

What can we say about these two implementations of Rot13?

The first is simpler but unfortunately much slower than the second. On a slow
Pentium, we can encode an 8000 characters word in about 13 seconds using the
second solution, while the first takes about 45 seconds.

7.11 Glossary

compound data type: A data type in which the values are made up of com-
ponents, or elements, that are themselves values.

traverse: To iterate through the elements of an ordered collection of elements,
performing a similar operation on each.

index: A variable or value used to select a member of an ordered collection of
elements, such as a character from a word.

mutable: A compound data types whose elements can be assigned new values.

counter: A variable used to count something, usually initialized to zero and
then incremented.

increment: To increase the value of a variable by one.

decrement: To decrease the value of a variable by one.

62 Words

Chapter 8

Lists

A list is an ordered collection of elements, where each element is identified by
an index. Lists are similar to words, which are ordered collections of characters,
except that the elements of a list can be words, arrays or other lists. Lists and
words—and other things that behave like ordered collections of elements—are
called sequences.

8.1 List values

There are several ways to create a new list; the simplest is to enclose the elements
in square brackets ([and]):

[10 20 30 40]

[spam bungee swallow]

The first example is a list of four integers. The second is a list of three words.
The elements of a list don’t have to be the same type.

Keep in mind that square brackets serve two purposes at once: they delimit a
list while quoting it, so that Logo’s evaluator interprets the list as representing
itself, without invoking the procedures it names.

The following list contains a word, two numbers, and another list:

[hello 2.0 5 [10 20]]

A list within another list is said to be nested.

Lists that contain consecutive numbers are common, so Logo provides a simple
way to create them:

? show iseq 3 7

[3 4 5 6 7]

? show rseq 3 7 9

64 Lists

[3 3.5 4 4.5 5 5.5 6 6.5 7]

? show rseq 2 30 15

[2 4 6 8 10 12 14 16 18 20 22 24 26 28 30]

The iseq function takes two arguments and returns a list containing all the
integers from the first to the second argument.

The rseq function outputs a list of equally spaced rational numbers. Their
number is equal to its third argument.

Finally, there is a special list that contains no elements. It is called the empty
list, and it is denoted [].

With all these ways to create lists, it would be disappointing if we couldn’t
assign list values to variables or pass lists as parameters to functions. We can.

? make "vocabulary [ameliorate castigate defenestrate]

? make "numbers [2 3 5 7 13 17]

? make "empty []

? (show :vocabulary :numbers :empty)

[ameliorate castigate defenestrate] [2 3 5 7 13 17] []

8.2 Accessing elements

The syntax for accessing the elements of a list is the same as the syntax for
accessing the characters of a word —first, butfirst, last, butlast and item.
Remember that the indices start at 1:

? show first :numbers

2

? show last :numbers

17

? show butfirst :numbers

[3 5 7 13 17]

? show butlast :vocabulary

[ameliorate castigate]

? show item 3 :numbers

5

If you try to read an element that does not exist, you get a runtime error:

? show item 7 :numbers

item doesn’t like 7 as input

8.3 List length

The function count returns the length of a list. It is a good idea to use this
value as the upper bound of a loop instead of a constant. That way, if the size
of the list changes, you won’t have to go through the program changing all the
loops; they will work correctly for any size list.

8.4 List membership 65

to traversal :w

localmake "index 1

localmake "n count :w

while [lessequalp :index :n][

print item :index :w

make "index sum :index 1

]

end

to lessequalp :x :y

output or lessp :x :y equalp :x :y

end

This loop traverses the list and displays each element on a line by itself. The
loop condition is lessequalp :index count :w, so when index is equal to the
length of the list plus one, the expression returns false, and the body of the loop
is not executed.

As an example, we can call:

? traversal [Guido Michele Elsa Mario Gloria]

Guido

Michele

Elsa

Mario

Gloria

Although a list can contain another list, the nested list still counts as a single
element. Therefore, the length of this list is four:

[spam! 1 [Brie Roquefort] [1 2 3]]

8.4 List membership

memberp is a boolean operator that tests membership in a sequence. We used
it in the preceding chapter with words, but it also works with lists and other
sequences:

? make "a [guido elsa [1 2 3] 32]

? show memberp "guido :a

true

? show memberp 33 :a

false

Since guido is a member of the a list, the memberp predicate returns true. Since
33 is not in the list, memberp returns false.

We can use the not in combination with memberp to test whether an element is
not a member of a list:

? show not memberp 33 :a

true

66 Lists

member is a function that outputs the portion of a list from the first instance of
the member for which memberp would be true to the end of the list:

? make "a [anna guido giovanni guido silvio]

? show memberp "guido :a

true

? show member "guido :a

[guido giovanni guido silvio]

Finally, to reverse the order of the elements in a list (or in a word), we can use
reverse.

? show reverse :a

[silvio guido giovanni guido anna]

8.5 Lists and foreach loops

The foreach loop works with lists too. The following is an example of its use:

to traversal :w

foreach :w [print ?]

end

Each time through the loop, an element in the list, indicated by the ? symbol,
is printed. The loop continues until no elements are left. For example:

? traversal :a

guido

elsa

1 2 3

32

As we have seen in the preceding chapter, foreach can be used with the #
symbol, which represents the position in the input list of the element currently
printed.

? foreach :a [print #]

1

2

3

4

Any list expression can be used in a foreach loop:

? foreach iseq 1 20 [if equalp remainder ? 2 0 [print ?]]

2

4

6

8

10

12

14

8.6 Sentence 67

16

18

20

? foreach [banana apple orange] [print (word "|I like to eat | ? "s)]

I like to eat bananas

I like to eat apples

I like to eat oranges

The first example prints all the even numbers between one and twenty. The
second example expresses enthusiasm for various fruits.

8.6 Sentence

sentence allows us not only to combine words in a sentence but also the ele-
ments of two or more lists. For example:

? show (sentence "This "is "a "sentence)

[This is a sentence]

? show sentence [This is a list] [This too]

[This is a list This too]

? show sentence [This is [a nested] list] [This [too] !]

[This is [a nested] list This [too] !]

In the first example we combine words, in the second flat lists —that is lists
whose elements are words— while in the third one two nested lists are combined.

sentence is mostly used as a combiner in recursive procedures. In the preceding
chapter we showed you how to encode a word with Rot13. Here we’ll extend
the program to lists, as in the following example:

? show rot13 [Logo lists are useful]

[Ybtb yvfgf ner hfrshy]

? show rot13 [Ybtb yvfgf ner hfrshy]

[Logo lists are useful]

The extension is really very simple, as we can draw on the previous developed
procedures. We only have to modify the top level procedure to process a list
instead of a word and create rot13list:

to rot13 :l

output rot13list :l

end

to rot13list :l

if equalp :l [] [output []]

output sentence rot13word first :l rot13list butfirst :l

end

to rot13word :w

if equalp :w " [output "]

output word rot13char first :w rot13word butfirst :w

68 Lists

end

to rot13char :c

if and greaterp ascii :c 64 lessp ascii :c 91 [

output char sum remainder difference ascii :c 52 26 65]

if and greaterp ascii :c 96 lessp ascii :c 123 [

output char sum remainder difference ascii :c 84 26 97]

output :c

end

To understand rot13list we have to remember that rot13word outputs coded
words, that are assembled recursively by rot13list using sentence in combi-
nation with first and butfirst. The flow of execution of rot13list is the
following:

? show rot13list [Logo lists are useful]

(rot13list [Logo lists are useful])

(rot13list [lists are useful])

(rot13list [are useful])

(rot13list [useful])

(rot13list [])

rot13list outputs []

rot13list outputs [hfrshy]

rot13list outputs [ner hfrshy]

rot13list outputs [yvfgf ner hfrshy]

rot13list outputs [Ybtb yvfgf ner hfrshy]

[Ybtb yvfgf ner hfrshy]

8.7 An extended example

Most computer programs do the same thing every time they execute, so they are
said to be deterministic. Determinism is usually a good thing, since we expect
the same calculation to yield the same result. For some applications, though,
we want the computer to be unpredictable. Games are an obvious example, but
there are more.

Making a program truly nondeterministic turns out to be not so easy, but there
are ways to make it at least seem nondeterministic. One of them is to generate
random numbers and use them to determine the outcome of the program. Logo
provides a built-in function that generates pseudorandom numbers, which are
not truly random in the mathematical sense, but for our purposes they will do.

random returns an integer between 0 and its argument —called the
upperbound—, which must be a whole number. Each time you call random,
you get the next number in a long series. To see a sample, run this loop:

? foreach iseq 1 8 [print random 10]

4

8

2

8.7 An extended example 69

5

0

8

4

2

8.7.1 List of random integers

The first step is to generate a list of random values. randomList takes two
integer parameters — the length of the list we are creating and the upperbound
in the random function. The function returns a list of random numbers.

randomList can be implemented in many ways: we’ll present a recursive ap-
proach, one that uses foreach and another based upon repeat.

to randomList :n :u

if equalp :n 0 [output []]

output sentence random :u randomList difference :n 1 :u

end

Given the list length —n— and the upperbound —u— the procedure
randomList keeps on calling itself decrementing n. When n=0 it then returns
a list of n random numbers between 0 and the upperbound u (excluded). It
should be at this point easy to follow the flow of execution:

? show randomlist 5 10

(randomlist 5 10)

(randomList 4 10)

(randomList 3 10)

(randomList 2 10)

(randomList 1 10)

(randomList 0 10)

randomList outputs []

randomList outputs [0]

randomList outputs [7 0]

randomList outputs [0 7 0]

randomList outputs [5 0 7 0]

randomlist outputs [0 5 0 7 0]

[0 5 0 7 0]

Our second implementation uses foreach in combination with iseq and a new
command named queue.

to randomList :n :u

localmake "list []

foreach iseq 1 :n [queue "list random :u]

output :list

end

queue adds an element to a list that is the value of a variable. The variable’s
initial value should be the empty list. New members are added at the end of
the list. An example should clarify this definition:

70 Lists

? make "a []

? queue "a 1

? show :a

[1]

? queue "a 2

? show :a

[1 2]

In randomList we create a local variable list with initial value the empty
list. Then for each number between 1 and n we add a random number to the
beginning of the list. Finally the procedure outputs list.

Our third implementation is a simplification of the second. Instead of using
foreach iseq 1 :n we can use repeat :n.

to randomList :n :u

localmake "list []

repeat :n [queue "list random :u]

output :list

end

repeat repeatedly executes its second argument a number of times equal to its
first argument.

As an aside, we should mention that repcount is a function that outputs the
repetition count of repeat, as in the following example:

? repeat 5 [print repcount]

1

2

3

4

5

The integers generated by random are supposed to be distributed uniformly,
which means that every value is equally likely. In a random list of, say, integers
between 0 and 9, there should be approximately the same number of 0’s, of 1’s
and so forth.

We can test this theory by writing a program to count the number of distinct
values generated.

8.7.2 Counting

A good approach to problems like this is to look for subproblems that fit a
computational pattern you have seen before.

In this case, we want to traverse a list of numbers and count the number of
times an element is equal to a given integer. In our example we will consider a
250 element list of random integers between 0 and 9.

8.7 An extended example 71

? show randomList 250 10

[6 5 7 4 4 4 9 8 8 5 5 8 0 4 7 3 7 3 4 6 1 6 3 8 2 4 4 2 7 9 9

2 1 1 2 4 6 4 0 9 4 1 1 7 7 2 7 8 1 8 3 1 2 9 4 7 5 5 3 5 7 6

9 5 5 6 1 6 0 9 6 5 3 6 8 9 9 6 3 0 4 2 7 4 3 6 4 0 8 5 3 0 1

3 2 8 4 2 8 2 4 0 7 4 7 1 3 8 0 9 3 0 8 8 8 3 8 8 5 6 2 0 8 2

7 8 0 9 8 6 5 9 0 4 1 7 9 2 5 0 1 3 9 5 0 0 6 2 4 5 6 0 0 8 0

6 0 2 4 8 3 1 8 3 4 7 2 9 1 0 8 5 3 7 7 7 6 1 4 4 2 6 8 4 8 7

1 1 7 1 0 0 4 9 9 5 6 2 9 3 7 9 6 3 1 4 1 2 8 6 4 8 8 0 1 6 8

8 1 5 7 8 8 9 3 7 4 0 3 8 7 1 7 9 2 9 6 4 6 0 8 1 5 9 0 3 5 1

1 1]

In the first place we’ll count the occurrence of one number, say 1. Our first
program is an adaption of the now well known traversal pattern.

to countOne :l

if equalp :l [] [output 0]

if equalp first :l 1 [output sum 1 countOne butfirst :l]

output countOne butfirst :l

end

As usual the procedure traverses the list one element at a time. If the element’s
value is one, it adds one to a running sum, otherwise nothing is done. The
procedure outputs the value of the sum when there are no more elements in the
list.

countOne can be easily generalized to countInteger, a function that counts
the number of an arbitrary integer in a list.

to countInteger :l :i

if equalp :l [] [output 0]

if equalp first :l :i [output sum 1 countInteger butfirst :l :i]

output countInteger butfirst :l :i

end

Invoking this function 10 times with our list of numbers between 0 an 9, we get:

? repeat 10 [show sentence

difference repcount 1 countInteger :list difference repcount 1]

[0 26]

[1 27]

[2 20]

[3 22]

[4 29]

[5 20]

[6 24]

[7 25]

[8 34]

[9 23]

So we have an answer: the calculated frequencies are fairly close to 25, the
expected value.

Although this solution works, it is not as efficient as it could be. Every time

72 Lists

it calls countInteger, it traverses the entire list. As the number of distinct
integers increases, that gets to be a lot of traversals.

Moreover, we have to know beforehand the range of distinct values —0 to 9
in our example— while we would like to compute frequencies of every possible
collection of integers.

We’ll examine a better single pass solution in the next chapter, where we intro-
duce a new data type, arrays.

8.8 Glossary

list: A collection of elements, where each element is identified by an index.

index: An integer value that indicates an element of a list.

element: One of the values in a list (or other sequence).

sequence: Any of the data types that consist of an ordered collection of ele-
ments, with each element identified by an index.

nested list: A list that is an element of another list.

list traversal: The sequential accessing of each element in a list.

Chapter 9

Arrays

9.1 Mutability and arrays

So far, you have seen two compound types: words, which are made up of char-
acters; and lists, which are made up of elements that can be words, arrays or
lists. One important difference we didn’t note is that the elements of a list can
be modified but the characters in a word cannot. In other words, words are
immutable and lists are mutable.

We didn’t examine list mutation because it can lead to unexpected effects if
used without an adeguate understanding of how lists are represented in Logo.

Arrays are a compound type that allow safe mutation.

Like lists, arrays are ordered collections of elements. Differently from lists,
arrays have a fixed length that should be declared beforehand, while lists can
grow and shrink at will.

Arrays are delimited by braces; their elements can be words, numbers, other
arrays or lists.

? print {This is an array}

{This is an array}

? print {1 {a b} 3 4}

{1 {a b} 3 4}

The function array outputs an array with a given size, with members empty
lists.

? print array 4

{[] [] [] []}

Array members can be selected with item and changed with setitem.

74 Arrays

? make "age {12 13 12 12 13 13 14 14 15 12 12 12 12 13}

? show :age

{12 13 12 12 13 13 14 14 15 12 12 12 12 13}

? show item 9 :age

15

? setitem 9 :age 16

? show :age

{12 13 12 12 13 13 14 14 16 12 12 12 12 13}

In the example, setitem replaces the 9th member of age with a new value,
changing it from 15 to 16.

Arrays are indexed starting from 1 by default, although sometimes we may want
to start from 0 (or some other number, positive or negative):

? make "a (array 4 0)

? show item 0 :a

[]

? make "a {a b c}@0

? show item 0 :a

a

9.2 Frequencies revisited

Consider the list of 250 integers between 0 and 9 we used in the preceding
chapter. Although the program we wrote works, it is not as general as it could
be. With the new command setitem we can compute the frequencies more
efficiently:

? show freqInteger [1 1 1 2 2 2 2 2 4 4 4 3 3 3 3 6]

[[1 3] [2 5] [3 4] [4 3] [5 0] [6 1]]

? show freqInteger [-1 1 1 1 0 0 0 -1 -1 -1 3 3 3 3 3 3 3]

[[-1 4] [0 3] [1 3] [2 0] [3 7]]

? show freqInteger :list

[[0 26] [1 27] [2 20] [3 22] [4 29] [5 20] [6 24] [7 25] [8 34] [9 23]]

freqInteger returns a list whose elements are lists made up of two elements:
an integer value and its frequency in the input list.

Before showing you how freqInteger works, we have to define a new helper
procedure —maxmin— that finds the minimum and the maximum values in a
list of numbers.

to maxmin :l [max first :l] [min first :l]

if emptyp :l [output sentence :max :min]

if lessp first :l :min [output (maxmin butfirst :l :max first :l)]

if greaterp first :l :max [output (maxmin butfirst :l first :l :min)]

output (maxmin butfirst :l :max :min)

end

maxmin traverses the input list, checking if the first element of the input list is
less than min or if it is greater than max. In the first case it makes min equal to

9.2 Frequencies revisited 75

the lesser value, in the second max equal to the greater value. When the input
list is empty, it returns max and min, that now are effectively the maximum and
minimum values of the original input list.

maxmin’s flow of execution can be followed using trace, as in the following
example:

? show maxmin [2 1 4 3]

(maxmin [2 1 4 3])

(maxmin [1 4 3] 2 2)

(maxmin [4 3] 2 1)

(maxmin [3] 4 1)

(maxmin [] 4 1)

maxmin outputs [4 1]

maxmin outputs [4 1]

maxmin outputs [4 1]

maxmin outputs [4 1]

maxmin outputs [4 1]

[4 1]

We could also implement maxmin using item and a foreach loop.

to maxmin :l

localmake "min first :l

localmake "max first :l

foreach butfirst :l [

if lessp ? :min [make "min ?]

if greaterp ? :max [make "max ?]

]

output list :max :min

end

We first count the input list’s elements, then set max and min to the value of the
input list’s first element. The foreach loop is the core of the procedure: from
2 to n, if the current element is less than the current value of min, we set min
equal to that element; likewise for max. At the end of the loop, the variables
max and min hold the maximum and minimum.

We can now show freqInteger’s definition:

to freqInteger :l

localmake "maxmin maxmin :l

localmake "max first :maxmin

localmake "min last :maxmin

localmake "a (array difference sum :max 1 :min :min)

foreach iseq :min :max [setitem ? :a 0]

foreach :l [setitem ? :a sum item ? :a 1]

foreach iseq :min :max [setitem ? :a list ? item ? :a]

output arraytolist :a

end

The first three lines just create the local variables max and min. In the next
three lines we create an array of zeros, whose length is equal to the number of

76 Arrays

integers between min and max. Then, for each element of the input list, we set
the value of the array’s element, whose index is the value of the list’s element,
to its previous value plus one. Finally we output a list whose elements are lists
with two elements: an integer value and its frequency in the input list.

This procedure is still very limited, as it works only with lists of integers. In the
next chapter we’ll see a more general solution that uses a different composite
data type, property lists.

9.3 Sorting

Many programming languages, like Perl, have builtin routines to order the ele-
ments of sequence data types like lists or arrays.

Logo doesn’t give us this convenience and we have to write our own sort proce-
dures.

9.3.1 Selection sort

Selection sort is a (relatively) simple algorithm, that unfortunately is one of the
slowest.

? show selectionsortn [4 3 2 1 -1]

[-1 1 2 3 4]

To understand selection sort, it is useful to start with a related but simpler
problem: find the smallest number in a list and swap it with the first element.

? show selectionsortnfirst [4 3 2 1 -1]

[-1 3 2 1 4]

In the preceding example the procedure exchanges the first and the last element,
while the middle ones remain unchanged.

to selectionsortnfirst :l

localmake "a listtoarray :l

localmake "n count :a

localmake "n1 difference :n 1

local [i j min temp]

make "i 1

make "min 1

repeat difference :n :i [

make "j sum :i repcount

if lessp item :j :a item :min :a [make "min :j]

]

make "temp item :i :a

setitem :i :a item :min :a

setitem :min :a :temp

output arraytolist :a

end

9.3 Sorting 77

In the first six lines the procedure sets a number of local variables. The repeat
loop is the core of the procedure: at its end the variable min holds the index
of the array’s minimum element. The next three lines just swap the two array
elements —the first element and the element that holds the minimum value—
as we have seen in the example. Finally the procedure returns the modified list.

We can now apply this approach to the whole list: we just have to repeat the
process for all of the list’s elements but the last, using a second repeat loop.

to selectionsortn :l

localmake "a listtoarray :l

localmake "n count :a

localmake "n1 difference :n 1

local [i j min temp]

repeat :n1 [

make "i repcount

make "min :i

repeat difference :n :i [

make "j sum :i repcount

if lessp item :j :a item :min :a [make "min :j]

]

make "temp item :i :a

setitem :i :a item :min :a

setitem :min :a :temp

]

output arraytolist :a

end

In what follows we can see how the procedure swaps a’s elements, when we
invoke selectionsortn [4 3 2 1 -1].

{4 3 2 1 -1}

{-1 3 2 1 4}

{-1 1 3 2 4}

{-1 1 2 3 4}

9.3.2 Sorting numbers and words

In the preceding example we sorted a list of numbers. A simple change in the
comparison predicate allows us to extend the procedure to alphanumeric lists.

? show selectionsort [19 3 2 1]

[1 2 3 19]

? show (selectionsort [19 3 2 1] "c)

[1 19 2 3]

? show (selectionsort [guido elsa michele] "c)

[elsa guido michele]

In the first example we order a list numerically, while in the second the same
list is sorted following the ASCII conventions. In the third example we sort a
list of words in ASCII collating order.

78 Arrays

to selectionsort :l [t "n]

output ifelse equalp :t "n [selectionsortn :l][selectionsortc :l]

end

to selectionsortn :l

localmake "a listtoarray :l

localmake "n count :a

localmake "n1 difference :n 1

local [i j min temp]

repeat :n1 [

make "i repcount

make "min :i

repeat difference :n :i [

make "j sum :i repcount

if lessp item :j :a item :min :a [make "min :j]

]

make "temp item :i :a

setitem :i :a item :min :a

setitem :min :a :temp

]

output arraytolist :a

end

to selectionsortc :l

localmake "a listtoarray :l

localmake "n count :a

localmake "n1 difference :n 1

local [i j min temp]

repeat :n1 [

make "i repcount

make "min :i

repeat difference :n :i [

make "j sum :i repcount

if beforep item :j :a item :min :a [make "min :j]

]

make "temp item :i :a

setitem :i :a item :min :a

setitem :min :a :temp

]

output arraytolist :a

end

As you can see, selectionsortc differs from selectionsortn only in the com-
parison predicate: beforep instead of lessp.

selectionsort just calls one of the two procedures depending on the value of
t. The use of ifelse is new, though. This procedure can be used in fact as a
command or as a function, as in the preceding example.

9.4 Glossary 79

9.4 Glossary

array: an ordered collection of elements, where each element is identified by an
index.

immutable type: A type in which the elements cannot be modified. Assign-
ments to elements of immutable types cause an error.

mutable type: A data type in which the elements can be modified. All muta-
ble types are compound types. Lists and arrays are mutable data types;
words are not.

deterministic: A program that does the same thing each time it is called.

pseudorandom: A sequence of numbers that appear to be random but that
are actually the result of a deterministic computation.

80 Arrays

Chapter 10

Property lists

The compound types we learned about—strings, lists, and arrays—use integers
as indexes. If you try to use any other type as an index, you get an error.

Property lists provide a simple yet powerful way to handle key-value pairs.
They are similar to other compound types except that they can use any words as
indexes. As an example, we will create a dictionary to translate English words
into Italian.

One way to create a dictionary is to start with the empty property list and add
elements.

pprop "dict "one "uno

pprop "dict "two "due

pprop "dict "three "tre

pprop "dict "four "quattro

The four assignments add new elements to an empty property list named dict.
The command pprop accepts three arguments: two words —the name of the
property list and the name of the key– and a value, that can be a word, a list
or an array.

We can print a property list using plist:

? show plist "dict

[four quattro three tre two due one uno]

plist outputs a list, whose odd-numbered elements are property names while
the even-numbered ones are the property values.

In a property list the order of the key-value pairs is not significant, and we
should use gprop to retrieve a certain key’s value:

? show gprop "dict "four

quattro

82 Property lists

In the example, the key four of the property list named dict yields the value
quattro.

remprop removes a key-value pair from a property list. For example, we can
remove an entry from the previously defined property list:

? remprop "dict "three

? show plist "dict

[four quattro two due one uno]

We can also test if a name is associated to a non empty property list. guido is
associated to an empty property list and so plistp returns false while plist
returns the empty list, because in Logo names are by default associated to an
empty property list.

? show plistp "dict

true

? show plistp "guido

false

? show plist "guido

[]

10.1 Other functions

Given these tools, it’s easy to define new functions operating on property lists.

For example, pcount returns the number of key-value pairs in a property list:

to pcount :p

output quotient count plist :p 2

end

Consider the following property list, that associates city names to a list con-
taining their geographic coordinates:

pprop "city "Auburn [32.37 -85.29]

pprop "city "Albany [42.65 -73.75]

pprop "city "Adelphi [39.00 -76.97]

pprop "city "Aiken [33.54 -81.73]

pprop "city "Akron [41.08 -81.52]

pprop "city "Alexandria [38.80 -77.05]

pprop "city "Allentown [40.37 -75.29]

pprop "city "Abilene [32.27 -99.44]

Invoking pcount we get:

? show pcount "city

8

pkeys extracts a list containing all the property list’s keys:

10.2 Hints 83

to pkeys :pl

output pkeys1 plist :pl

end

to pkeys1 :l

if emptyp :l [output []]

output sentence first :l pkeys1 butfirst butfirst :l

end

pkeys outputs the value returned by pkeys1, which is a pretty straightforward
recursive procedure applied to a list. Calling pkeys we get:

? show pkeys "city

[Auburn Albany Adelphi Aiken Akron Alexandria Allentown Abilene]

If we prefer to print the keys in alphabetical order we can use the previously
defined selectionsort sorting procedure:

? show (selectionsort pkeys "city "c)

[Abilene Adelphi Aiken Akron Albany Alexandria Allentown Auburn]

If we want to print the key-value pairs in order, we can use a foreach loop:

? foreach (selectionsort pkeys "city "c) [show list ? gprop "city ?]

[Abilene [32.27 -99.44]]

[Adelphi [39.00 -76.97]]

[Aiken [33.54 -81.73]]

[Akron [41.08 -81.52]]

[Albany [42.65 -73.75]]

[Alexandria [38.80 -77.05]]

[Allentown [40.37 -75.29]]

[Auburn [32.37 -85.29]]

We can also easily test if a key exists, using pkeyp.

to pkeyp :key :pl

output ifelse equalp gprop :pl :key [] ["false] ["true]

end

For example, Aiken is a key of the property list city, while Augusta isn’t.

? show pkeyp "Aiken "city

true

? show pkeyp "Augusta "city

false

10.2 Hints

If you played around with the fibonacci function from chapter five, you might
have noticed that the bigger the argument you provide, the longer the function
takes to run. Furthermore, the run time increases very quickly. On a slow pen-
tium, fibonacci 10 finishes instantly, fibonacci 20 takes about five seconds
and fibonacci 30 takes more than ten minutes.

84 Property lists

To understand why, consider the trace of fibonacci 20. fibonacci 2 is called
4181 times, fibonacci 3 2584 and so on. This is an inefficient solution to the
problem, and it gets far worse as the argument gets bigger.

A good solution is to keep track of values that have already been computed by
storing them in a property list. A previously computed value that is stored for
later use is called a hint. Here is an implementation of fibonacci using hints:

to fibonacci :n

erpl "previous

local "newvalue

localmake "out fibonacci1 :n

erpl "previous

output :out

end

to fibonacci1 :n

if equalp :n 0 [output 0]

if equalp :n 1 [output 1]

if not equalp gprop "previous :n [] [output gprop "previous :n]

make "newvalue sum fibonacci1 difference :n 1 fibonacci1 difference :n 2

pprop "previous :n :newvalue

output :newvalue

end

The property list named previous keeps track of the Fibonacci numbers we
already know. In the beginnig and the end, erpl erases the property list,
because property list are always global.

Whenever fibonacci1 is called, it checks the property list to determine if it
contains the result. If it’s there, the function can output it immediately without
making any more recursive calls. If not, it has to compute the new value. The
new value is added to the property list before the function outputs the new
value.

Using this version of fibonacci, our machine can compute fibonacci 73
in an eyeblink (equal to 806,515,533,049,393). But when we try to compute
fibonacci 74, Logo gives us a wrong answer. Instead of 1,304,969,544,928,657
we get 1.30496954492866e+15.

The problem is that this number is too big to fit into a Logo integer and therefore
we get an approximate answer, which in this case is not what we want.

10.3 Ebg13 ntnva

Back again to rot13, this time using a property list for the coded characters.

In the top level procedure we create a property list named table, containing 52
keys — equal to the upper and lowercase letters of the alphabet — associated
to the coded characters. For example, the key A is linked to the value N.

10.3 Ebg13 ntnva 85

rot13list and rot13word are recursive procedure that progressively combine
the coded characters into words and sentences.

rot13char outputs a coded character if the original one is a key of the property
list table; otherwise it outputs the original letter.

to rot13 :l

make "caseignoredp "false

erpl "table

pprop "table "A "N pprop "table "B "O

pprop "table "C "P pprop "table "D "Q

pprop "table "E "R pprop "table "F "S

pprop "table "G "T pprop "table "H "U

pprop "table "I "V pprop "table "J "W

pprop "table "K "X pprop "table "L "Y

pprop "table "M "Z pprop "table "N "A

pprop "table "O "B pprop "table "P "C

pprop "table "Q "D pprop "table "R "E

pprop "table "S "F pprop "table "T "G

pprop "table "U "H pprop "table "V "I

pprop "table "W "J pprop "table "X "K

pprop "table "Y "L pprop "table "Z "M

pprop "table "a "n pprop "table "b "o

pprop "table "c "p pprop "table "d "q

pprop "table "e "r pprop "table "f "s

pprop "table "g "t pprop "table "h "u

pprop "table "i "v pprop "table "j "w

pprop "table "k "x pprop "table "l "y

pprop "table "m "z pprop "table "n "a

pprop "table "o "b pprop "table "p "c

pprop "table "q "d pprop "table "r "e

pprop "table "s "f pprop "table "t "g

pprop "table "u "h pprop "table "v "i

pprop "table "w "j pprop "table "x "k

pprop "table "y "l pprop "table "z "m

localmake "rotl rot13list :l

make "caseignoredp "true

erpl "table

output :rotl

end

to rot13list :l

if equalp :l [] [output []]

output sentence rot13word first :l rot13list butfirst :l

end

to rot13word :w

if equalp :w " [output "]

output word rot13char first :w rot13word butfirst :w

end

to rot13char :c

86 Property lists

ifelse equalp gprop "table :c [] [output :c][output gprop "table :c]

end

10.4 Counting words

In the preceding chapter we wrote a function that counted the number of occur-
rences of integers in a list. A more general version of this problem is to calculate
the frequencies of possibly non-numeric words in a list.

Property lists provide an elegant way to generate a frequency distribution of
words.

to freq :l

erpl "freq

local "f

freqiter :l

make "f plist "freq

erpl "freq

output :f

end

to freqiter :l

if equalp :l [] [stop]

(pprop "freq first :l

ifelse equalp gprop "freq first :l [] [1] [sum gprop "freq first :l 1]

)

freqiter butfirst :l

end

We start with an empty property list named freq. In freqiter, for each
element in the input list, we increment the current count. At the end, the
property list contains pairs of letters and their frequencies. Notice the ifelse
condition: if a property list key doesn’t exist gprop returns the empty list: in
that case we set the value to 0, otherwise we add one to the previous value.

Consider, as an example, a list whose elements are m (for “male”) and f (for
“female”):

make "l [m m

m m m m m m m m m m m m m m m f f f f f f f f f f f f f

f m m

m m

m m m m m m m m m f m m m m m m m m m m m f f f f f f f

f f f f f f m

m m

m m

m m m m m m m m m m m m m m f f f f f f f f f f f f f f

f m m m

m m

m m

10.5 Glossary 87

m m

m m

m m

m m

m m m m m m m m m m m m m m m m m m]

The list’s length is 462, 92 females and 370 males.

? show count :l

462

? show freq :l

[f 92 m 370]

10.5 Glossary

property list: A collection of key-value pairs that maps from keys to values.
The keys can be words, the values can be words, lists or arrays.

key: A value that is used to look up an entry in a property list.

key-value pair: One of the items in a property list.

hint: Temporary storage of a precomputed value to avoid redundant computa-
tion.

overflow: A numerical result that is too large to be represented in a numerical
format.

88 Property lists

Chapter 11

Files

While a program is running, its data is in memory. When the program ends,
or the computer shuts down, data in memory disappears. To store data per-
manently, you have to put it in a file. Files are usually stored on a hard drive,
floppy drive, or CD-ROM.

When there are a large number of files, they are often organized into directories
(also called “folders”). Each file is identified by a unique name, or a combination
of a file name and a directory name.

By reading and writing files, programs can exchange information with each other
and generate printable formats like PDF.

Working with files is a lot like working with books. To use a book, you have to
open it. When you’re done, you have to close it. While the book is open, you
can either write in it or read from it. In either case, you know where you are in
the book. Most of the time, you read the whole book in its natural order, but
you can also skip around.

All of this applies to files as well. To open a file, you specify its name and
indicate whether you want to read or write.

In the following example we want to write something in a newly created file.

? openwrite "out.txt

? setwrite "out.txt

? print [This will be printed in file out.txt]

? setwrite []

? close "out.txt

The openwrite command takes one argument, the name of the file, and opens
the file for writing.

If there is no file named out.txt, it will be created. If there already is one, it
will be replaced by the file we are writing.

90 Files

To put data in the file we have to set the write stream to that file, so that
print and friends will write on that file instead of the screen. We use setwrite
followed by the named of the already opened file name.

In the example, print then writes the list on the file. We then revert the write
stream to the screen Closing the file with close tells the system that we are
done writing and makes the file available for reading.

Now we can open the file again, this time for reading, and read the contents as
a list into a variable named line:

? openread "out.txt

? setread "out.txt

? make "line readlist

? setread []

? close "out.txt

? show :line

[This will be printed in file out.txt]

? show count :a

7

If we try to open a file that doesn’t exist, we get an error:

? openread "out.dat

File system error: I can’t open that file

If we use readword we get, not surprisingly, a word:

? openread "out.txt

? setread "out.txt

? make "line readword

? setread []

? close "out.txt

? show :line

This will be printed in file out.txt

? show count :line

36

readchars can be used to read a given number of characters :

? openread "out.txt

? setread "out.txt

? make "fivechars readchars 5

? setread []

? close "out.txt

? print :fivechars

This

? show count :fivechars

5

If not enough characters are left in the file, readchars returns the remaining
characters. When we get to the end of the file, readchars returns an empty
list:

11.1 Text files 91

? openread "out.txt

? setread "out.txt

? ignore readchars 200

? show readchars 1

[]

? setread []

? close "out.txt

The following function copies a file, reading and writing up to fifty characters
at a time. The first argument is the name of the original file; the second is the
name of the new file:

to copyFile :in :out

openread :in

setread :in

openwrite :out

setwrite :out

local "text

while [not eofp] [

make "text readchars 50

type :text

]

close :in

close :out

setread []

setwrite []

end

The eofp predicate is new. It outputs TRUE if there are no more characters to
be read in the read stream file, FALSE otherwise.

11.1 Text files

A text file is a file that contains printable characters and whitespace, organized
into lines separated by newline characters.

The readrawline procedure reads all the characters up to and including the
next newline character, returning a word.

The following is an example of a line-processing program. filterFile makes a
copy of in, omitting any lines that begin with ;:

to filterFile :in :out [:c "|;|]

openread :in

setread :in

openwrite :out

setwrite :out

local "text

while [not eofp] [

make "text readrawline

if not equalp first :text :c [print :text]

92 Files

]

close :in

close :out

setread []

setwrite []

end

readlist is a very useful command as it creates a list for each line read, but it
should be used with care, as it can lead to unexpected consequences.

Consider for example a file named list.txt made up of three lines:

[1 2

3

]

A single readlist, instead 6f reading just the first line, will read the whole file,
creating the following list:

[1 2 3]

The explanation is simple: when readlist reads a square bracket it tries to
complete the list, reading until it finds a closing square bracket.

You should also notice that readlist (and readword) process backslash, vertical
bar, and tilde characters in the read stream: the output list will not contain
these characters but they will have had their usual effect.

11.2 Directories

When you create a new file, the new file goes in the default working directory
(how you set it is system dependent). Similarly, when you open a file for reading,
Logo looks for it in the default working directory.

If you want to read a file somewhere else, you have to specify the path to the
file, which is the name of the directory (or folder) where the file is located:

? setprefix "/usr/share/dict

? openread "words

? setread "words

? show readword

aback

This example opens a file named words that resides in a directory named dict,
which resides in share, which resides in usr, which resides in the top-level
directory of the system, called /.

You cannot use / as part of a filename; it is reserved as a delimiter between
directory and filenames.

The file /usr/share/dict/words contains a list of words in alphabetical order,
of which the first is aback.

11.3 Save, Load and Dribble 93

11.3 Save, Load and Dribble

save is a command that saves in a file the procedures and variables defined in
a Logo session. Conversely, load loads from an external file procedures and
variables saved beforehand.

? make "a [1 2 3]

? show contents

[[] [a] []]

? save "session.lgo

? erall

? show contents

[[] [] []]

? load "session.lgo

? show contents

[[] [a] []]

In the preceding example, we first define a variable named a, than save the
whole workspace in a file named session.lgo, erase all contents and load
session.lgo restoring the previous workspace.

We could instead use dribble followed by a file name to save all the instructions
typed afterwards on the command line.

11.4 Frequencies

We have a file that records the shoe size and sex of a sample of college students.
This file is made up of 2007 lines, where the first field is either m or f and the
second a whole number less than 50:

m 38

m 38

m 39

m 40

f 37

f 37

f 38

Shoe sizes are recorded in European measures, where the number 41 is about
equal to 8 in American units. Using freqfile we get the following output:

? show freqfile "students.txt

[f:43 1 f:42 3 f:41 13 f:40 115 f:39 227 f:38 359 f:37 327

f:36 148 f:35 35 f:34 2 m:49 1 m:47 1 m:46 18 m:45 68 m:44 123

m:43 178 m:42 212 m:41 107 m:40 53 m:39 12 m:38 4]

freqfile is an adaption of freq, defined in the preceding chapter; it accepts
a file name as input and returns a list. The list’s odd items are the distinct
combinations of the codes contained in the file, divided for convenience by :,
while the even items are their frequencies. For example, in students.txt there

94 Files

are 212 male students that wear shoes sized 42: therefore we get the key-value
pair m:42 212.

to freqfile :file

; file: one or more columns divided by one or more spaces

; last line ends with a return;

; no empty lines

openread :file

setread :file

erpl "freq

local [l f row column]

freqiterfile

setread []

close :file

make "f plist "freq

erpl "freq

output :f

end

to freqiterfile

if eofp [stop]

make "l butlast list2word readlist

pprop "freq :l ifelse equalp gprop "freq :l [] [1] [sum gprop "freq :l 1]

freqiterfile

end

to list2word :l

if equalp count :l 1 [output word first :l ":]

output list2worditer :l

end

to list2worditer :l

if emptyp :l [output "]

output (word first :l ": list2worditer butfirst :l)

end

The top level procedure freqfile opens and closes the file, erases a property
list named freq and outputs a list contaning the key-values pairs of the property
list.

freqiterfile iteratively reads into a list the file’s lines, converting them into
words using list2word; for each line in the input file it increments the current
count. In the end, the property list freq contains pairs of codes and their
frequencies.

It’s worth noticing a couple of points.

Firstly, the input routine is quite inflexible: if we want to use a different file
format we should modify accordingly freqiterfile and/or list2word. More-
over, you should be aware that our format doesn’t allow for empty lines or a
truncated last line, that is a line not ending with a return character.

11.4 Frequencies 95

Secondly, frequencies can be calculated for one, two or more fields. For example,
using the following file:

a 1 x

a 1 y

a 2 y

a 1 x

b 1 x

b 1 x

b 1 y

a 2 x

a 1 y

b 2 x

we get:

[b:2:x 1 a:2:x 1 b:1:y 1 b:1:x 2 a:2:y 1 a:1:y 2 a:1:x 2]

11.4.1 A better presentation

From the output list of freqfile "students.txt we can print the following
table:

? table freqfile "students.txt

f m Total

34 2 0 2

35 35 0 35

36 148 0 148

37 327 0 327

38 359 4 363

39 227 12 239

40 115 53 168

41 13 107 120

42 3 212 215

43 1 178 179

44 0 123 123

45 0 68 68

46 0 18 18

47 0 1 1

49 0 1 1

Total 1230 777 2007

You’ll probably agree that this presentation is better than freqfile’s raw out-
put.

We won’t illustrate table here. You’ll find it — together with the student’s data
and htmltable, a procedure that creates an html page containing the tabulated
data — in Appendix A.

96 Files

11.5 Glossary

file: A named entity, usually stored on a hard drive, floppy disk, or CD-ROM,
that contains a stream of characters.

directory: A named collection of files, also called a folder.

path: A sequence of directory names that specifies the exact location of a file.

text file: A file that contains printable characters organized into lines sepa-
rated by newline characters.

Appendix A

Logo examples

A.1 Freq

A.1.1 student’s data

m 38 m 38 m 38 m 38 m 39 m 39 m 39 m 39 m 39 m 39 m 39 m 39 m 39 m 39 m 39

m 39 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40

m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40

m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40

m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 40 m 41 m 41 m 41 m 41 m 41 m 41

m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41

m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41

m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41

m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41

m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41

m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41

m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 41 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42

m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 42 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

98 Logo examples

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43

m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 43 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44

m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 44 m 45

m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45

m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45

m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45

m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 45

m 45 m 45 m 45 m 45 m 45 m 45 m 45 m 46 m 46 m 46 m 46 m 46 m 46 m 46 m 46

m 46 m 46 m 46 m 46 m 46 m 46 m 46 m 46 m 46 m 46 m 47 m 49 f 34 f 34 f 35

f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35

f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35 f 35

f 35 f 35 f 35 f 35 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36 f 36

f 36 f 36 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

A.1 Freq 99

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37

f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 37 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38

f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 38 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39 f 39

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40

100 Logo examples

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40

f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 40 f 41 f 41 f 41 f 41 f 41

f 41 f 41 f 41 f 41 f 41 f 41 f 41 f 41 f 42 f 42 f 42 f 43

A.1.2 converting student’s data

to convert.file :infile :outfile

openread :infile

setread :infile

openwrite :outfile

setwrite :outfile

convert.file.iter

close :infile

setread []

close :outfile

setwrite []

end

to convert.file.iter

if eofp [stop]

convert.line

convert.file.iter

end

to convert.line

print.line readlist

end

to print.line :l

if emptyp :l [stop]

(print first :l first butfirst :l)

print.line butfirst butfirst :l

end

A.1.3 freqfile

to freqfile :file

; file: one or more columns divided by one or more spaces

; last line ends with a return

; no empty lines

openread :file

setread :file

erpl "freq

local [l f row column]

freqiterfile

setread []

close :file

make "f plist "freq

erpl "freq

A.1 Freq 101

output :f

end

to freqiterfile

if eofp [stop]

make "l butlast list2word readlist

pprop "freq :l ifelse equalp gprop "freq :l [] [1] [sum gprop "freq :l 1]

freqiterfile

end

A.1.4 table

to table :f

local [br bc rtot ctot gtot i j]

erpl "freq

makefreq :f

make "br brows :f

make "bc bcolumns :f

make "rtot rtotals :f

make "ctot ctotals :f

make "gtot apply "sum :ctot

type tab

foreach :bc [type se ? tab]

print "Total

foreach :br [

make "i ?

make "j #

type se :i tab

foreach :bc [

type se ifelse emptyp gprop "freq (word ? ": :i) [0] [gprop "freq (word ? ": :i)] tab

]

print item :j :rtot

]

type se "Total tab

foreach :bc [type se item # :ctot tab]

print :gtot

erpl "freq

end

to tab

output char 9

end

to makefreq :f

if emptyp :f [stop]

pprop "freq first :f first butfirst :f

makefreq butfirst butfirst :f

end

102 Logo examples

to split :w

localmake "l []

localmake "s "

localmake "cc 0

foreach :w [

ifelse equalp ? ": [make "cc 1][

ifelse equalp :cc 1 [push "l :s make "cc 0 make "s ?][make "s word :s ?]]

]

output sentence reverse :l :s

end

to bcolumns :f

if emptyp :f [output []]

output (shellsort remdup sentence first split first :f bcolumns butfirst butfirst :f "c)

end

to brows :f

if emptyp :f [output []]

output (shellsort remdup sentence first butfirst split first :f brows butfirst butfirst :f "c)

end

to list2word :l

if equalp count :l 1 [output word first :l ":]

output list2worditer :l

end

to list2worditer :l

if emptyp :l [output "]

output (word first :l ": list2worditer butfirst :l)

end

to shellsort :l [:t "n]

localmake "a (listtoarray :l 0)

localmake "n count :l

localmake "gap int quotient count :l 2

localmake "inv 0

local [i j exchange]

output ifelse equalp :t "n [arraytolist shellsort1][arraytolist shellsort2]

end

to shellsort1

if lessp :gap 1 [output :a]

repeat difference :n :gap [

make "i difference repcount 1

make "j sum :i :gap

if (greaterp item :i :a item :j :a) [

A.1 Freq 103

make "exchange item :j :a

setitem :j :a item :i :a

setitem :i :a :exchange

make "inv 1

]

]

ifelse greaterp :inv 0 [make "inv 0] [make "gap int quotient :gap 2]

output shellsort1

end

to shellsort2

if lessp :gap 1 [output :a]

repeat difference :n :gap [

make "i difference repcount 1

make "j sum :i :gap

if (beforep item :j :a item :i :a) [

make "exchange item :j :a

setitem :j :a item :i :a

setitem :i :a :exchange

make "inv 1

]

]

ifelse greaterp :inv 0 [make "inv 0] [make "gap int quotient :gap 2]

output shellsort2

end

to rtotals :f

local "i

localmake "rtot []

localmake "tot 0

foreach :br [

make "i ?

foreach :bc [

make "tot sum :tot ifelse emptyp gprop "freq (word ? ": :i) [0] [gprop "freq (word ? ": :i)]

]

push "rtot :tot

make "tot 0

]

output reverse :rtot

end

to ctotals :f

local "i

localmake "ctot []

localmake "tot 0

foreach :bc [

make "i ?

foreach :br [

104 Logo examples

make "tot sum :tot ifelse emptyp gprop "freq (word :i ": ?) [0] [gprop "freq (word :i ": ?)]

]

push "ctot :tot

make "tot 0

]

output reverse :ctot

end

A.1.5 htmltable

to htmltable :f :file

openwrite :file

setwrite :file

local [br bc rtot ctot gtot i j]

erpl "freq

makefreq :f

make "br brows :f

make "bc bcolumns :f

make "rtot rtotals :f

make "ctot ctotals :f

make "gtot apply "sum :ctot

print "|<html><head><title>htmltable</title></head><body>|

print "|<table border="0">|

print "|<tr>|

type "|<td></td>|

foreach :bc [type (se "<td> ? "</td>)]

print "|<td>Total</td>|

print "|</tr>|

foreach :br [

make "i ?

make "j #

type (se "<tr> "<td> :i "</td>)

foreach :bc [

type (se "<td> ifelse emptyp gprop "freq (word ? ": :i) [0] [gprop "freq (word ? ": :i)] "</td>)

]

print (se "<td> item :j :rtot "</td> "</tr>)

]

type (se "<tr> "<td> "Total "</td>)

foreach :bc [type (se "<td> item # :ctot "</td>)]

print (se "<td> :gtot "</td> "</tr>)

print "|</table>|

print "|</body></html>|

setwrite []

close :file

A.1 Freq 105

erpl "freq

end

106 Logo examples

Appendix B

GNU Free Documentation
License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft,” which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

B.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The

108 GNU Free Documentation License

“Document,” below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you.”

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (For example, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical, or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LATEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

B.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

B.3 Copying in Quantity 109

that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in Section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

B.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

B.4 Modifications

You may copy and distribute a Modified Version of the Document under the conditions
of Sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

110 GNU Free Documentation License

• List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as
the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

• Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History,” and its title, and add to it an item stat-
ing at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

• In any section entitled “Acknowledgements” or “Dedications,” preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

• Delete any section entitled “Endorsements.” Such a section may not be included
in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements,” provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

B.5 Combining Documents 111

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

B.5 Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in Section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the vari-
ous original documents, forming one section entitled “History”; likewise combine any
sections entitled “Acknowledgements,” and any sections entitled “Dedications.” You
must delete all sections entitled “Endorsements.”

B.6 Collections of Documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

112 GNU Free Documentation License

B.7 Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate,”
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of Section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one quarter of the entire aggregate, the
Document’s Cover Texts may be placed on covers that surround only the Document
within the aggregate. Otherwise they must appear on covers around the whole aggre-
gate.

B.8 Translation

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of Section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

B.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense, or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

B.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http:///www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ”or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

B.11 Addendum: How to Use This License for Your Documents 113

B.11 Addendum: How to Use This License for

Your Documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being LIST
THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License.”

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover
Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

114 GNU Free Documentation License

Index

access, 64
algorithm, 8
ambiguity, 6
argument, 21, 24
array, 15
assignment, 15, 43

multiple , 51

base case, 31
body

loop, 44
boolean expression, 25, 31
boolean function, 36
branch, 27, 31
bug, 3, 8

call
function, 17

chained conditional, 27
circular definition, 37
command, 15
comment, 14, 15
comparison

word, 55
compile, 2, 8
complete language, 37
compound data type, 53, 61
computational pattern, 56
condition, 31, 44
conditional

chained, 27
conditional execution, 26
conversion

type, 18
count, 74
counter, 57, 61
counting, 70, 86

data type

compound, 53
dead code, 42
debugging, 3, 8
decrement, 61
definition

circular, 37
delimiter, 92
deterministic, 79
development

incremental, 34
development plan, 51
directory, 92, 96
Doyle, Arthur Conan, 5

element, 63, 72
encapsulate, 51
error

runtime, 4
semantic, 4
syntax, 4

error checking, 40
eureka traversal, 56
exception, 4, 8
executable, 8
expression, 13, 15

boolean, 25, 31

factorial function, 37, 40
Fibonacci function, 39, 83
file, 89, 96

text, 91
flow of execution, 24
foreach loop, 54, 66
formal language, 5, 8
function, 15

boolean, 36
factorial, 37
list, 67
math, 19

116 Index

function call, 17

gamma function, 40
generalization, 47
generalize, 51
guardian, 42

hello world, 7
high-level language, 2, 8
hint, 83, 87
Holmes, Sherlock, 5

immutable type, 79
immutable word, 56
increment, 61
incremental development, 34, 42
index, 61, 72, 81
infinite loop, 44, 51
infinite recursion, 30, 31, 40
instruction, 15
Intel, 45
interpret, 2, 8
iteration, 43, 51

key, 81, 87
key-value pair, 81, 87

language
complete, 37
formal, 5
high-level, 2
low-level, 2
natural, 5
programming, 1
safe, 4

leap of faith, 39
length, 64
Linux, 5
list, 15, 63, 72

element, 64
foreach loop, 66
length, 64
membership, 65
nested, 63
traversal, 64

list function, 67
list traversal, 72
literalness, 6

local variable, 23, 24, 48
logarithm, 45
loop, 44, 51

body, 44
foreach loop, 54
infinite, 44
traversal, 54
while, 43

loop variable, 51
low-level language, 2, 8

math function, 19
multiple assignment, 43, 51
mutable type, 79

natural language, 5, 8
nested list, 72

object code, 8
operand, 13, 15
operator, 13, 15
order of operations, 14

parameter, 21, 24
parse, 6, 8
path, 92
pattern, 56, 57
Pentium, 45
pickling, 93
poetry, 6
portability, 8
portable, 2
predicate, 15
predicates, 36
primitive procedure, 15
problem-solving, 8
procedure, 15, 24

argument, 21
parameter, 21

procedure call, 24
procedure definition, 24
procedure invocation, 24
program, 8

development, 51
program development

generalization, 47
programming language, 1
prompt, 30, 31

Index 117

property list, 81, 87
prose, 6
pseudorandom, 79

recursion, 28, 31, 37, 39
infinite, 30, 40

redundancy, 6
return value, 33, 42
rules of precedence, 14, 15
runtime error, 4, 8, 64, 90

safe language, 4
scaffolding, 34, 42
script, 8
semantic error, 4, 8
semantics, 4, 8
sequence, 63, 72
source code, 8
statement

assignment, 43
while, 43

syntax, 4, 8
syntax error, 4, 8

table, 45
two-dimensional, 46

temporary variable, 34, 42
text file, 91, 96
token, 8
traversal, 54, 56, 66

list, 64
traverse, 61
Turing Thesis, 37
Turing, Alan, 37
type checking, 40
type conversion, 18

value, 15
variable, 12, 15

local, 23, 48
temporary, 34, 42

while statement, 43
word, 15

immutable, 56
length, 53

word comparison, 55

118 Index

